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Abstract
Federated Learning (FL) is an emerging distributed machine
learning (ML) technique that enables in-situ model training
and inference on decentralized edge devices. We propose
Totoro, a novel scalable FL engine, that enables massive FL
applications to run simultaneously on edge networks. The
key insight is to explore a distributed hash table (DHT)-based
peer-to-peer (P2P) model to re-architect the centralized FL
system design into a fully decentralized one. In contrast to
previous studies where many FL applications shared one
centralized parameter server, Totoro assigns a dedicated pa-
rameter server to each individual application. Any edge node
can act as any application’s coordinator, aggregator, client se-
lector, worker (participant device), or any combination of the
above, thereby radically improving scalability and adaptivity.
Totoro introduces three innovations to realize its design: a
locality-aware P2P multi-ring structure, a publish/subscribe-
based forest abstraction, and a bandit-based exploitation-
exploration path planning model. Real-world experiments
on 500 Amazon EC2 servers show that Totoro scales grace-
fully with the number of FL applications and 𝑁 edge nodes,
speeds up the total training time by 1.2 × −14.0×, achieves
𝑂 (𝑙𝑜𝑔𝑁 ) hops for model dissemination and gradient aggre-
gation with millions of nodes, and efficiently adapts to the
practical edge networks and churns.
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1 Introduction
With the emergence of 5G networks and the proliferation
of connected devices, federated learning (FL) enables data
processing and machine learning to take place at the edge of
the network. This means that data can be processed locally
on edge devices, without the need for centralized servers
or data centers, reducing the amount of data that needs to
be transmitted and improving privacy. FL has been used
in many application domains, including predicting human
activities [37, 38], learning sentiment [84], language process-
ing [47, 61, 100], and enterprise infrastructures [66].

The problem. We consider a typical edge computing archi-
tecture where millions of edge devices (e.g., smart wearables,
self-driving car sensors) are interconnected with the remote
cloud via the edge layer. The edge layer has hundreds of
thousands of server-grade machines, gateways, and routers,
referred to as “edge nodes”, maintained by different edge
providers across geo-distributed sites. The raw data is col-
lected and stored at these edge nodes, and amachine learning
model is trained from the distributed data without sending
the raw data from the nodes to a central place.
There has been a rise of FL tools and frameworks, such

as Tensorflow Federated [15], LEAF [28], PaddleFL [8] and
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Figure 1. Edge federated learning use cases.

PySyft [11]. However, we face significant challenges in build-
ing an efficient FL engine on practical edge networks due to
the edge dynamics and the high scalability requirements of
emerging FL applications.
Figure 1 depicts a use case scenario that highlights these

challenges. In future Smart Health systems, wearable de-
vices such as smart watches, fitness trackers, and blood pres-
sure meters are equipped with wide-area network access.
They continuously collect physical and behavioral data such
as heart rate, blood pressure, and human activity from nu-
merous users. On the back end, many FL applications con-
currently run on these devices or edge nodes, performing
in-situ training using the collected sensor data. Examples
of these FL applications include activity recognition appli-
cation, which predicts human activities to prevent injuries
and falls [39]; fitness tracking application, which analyzes
calories burned during exercises [98]; and abnormal health
detection application, which detects abnormal health condi-
tions like depression, stroke, and asthma and provides timely
intervention [105].
The first challenge is scalability: how to scale gracefully

to support a vast number of diverse FL applications that si-
multaneously run on edge networks? According to Gartner
Research, the edge applications market is expected to repre-
sent a 33-billion-dollar opportunity in 2025 [2]. As emerging
edge applications and edge devices grow in quantity and
complexity, the number of FL applications submitted to the
edge will likely become huge. As shown in Figure 1, different
FL applications may require training of various FL models for
different user profiles (e.g., age, gender, weight), medical con-
ditions, and environmental factors (e.g., indoor, outdoor, high
altitude) simultaneously based on the same raw data. This
results in the generation of a vast number of FL tasks. How-
ever, state-of-the-art FL systems [33, 34, 55, 82, 106] mostly
employ a centralized architecture, where one or multiple
central parameter servers handle all applications’ activities
such as model dissemination, round setup, participant selec-
tion, round management, and aggregation update. While this
centralized architecture scales well in datacenters, it poses

scalability bottlenecks in edge systems that have millions of
nodes and numerous concurrently running FL applications
that require diverse FL policies.
The second challenge is adaptivity: how to achieve good

training and testing performance for massive FL applications
on practical edge networks? To scale with massive FL applica-
tions, what cloud administrators usually do is to partition all
nodes into many sets and assign a parameter server per each
set of nodes in a static manner (e.g., one parameter server
per rack). This assignment may work well for datacenters
that have a global view of the system (e.g., the availability
of resources in each machine). However, this approach may
not quickly adapt to the edge platforms, characterized by
millions of resource-constrained nodes, unreliable network
links and random access protocols (e.g. in wireless networks),
client mobility (e.g., in mobile ad-hoc networks), and work-
load surges in arbitrary geographical (and dynamic) edge
locations.

Our solution: Totoro. We propose Totoro, a novel scalable
federated learning (FL) engine, that enables massive FL ap-
plications to run simultaneously on edge networks. Instead
of modifying today’s FL systems, we explore a different an-
gle in the design space: we propose a fully decentralized
architecture. In contrast to previous studies where many FL
applications shared one or multiple centralized parameter
servers, Totoro assigns a dedicated parameter server to each
individual application. By doing so, it avoids overloading any
single edge node. Any edge node can act as any application’s
coordinator, aggregator, client selector, worker (participant
device), or any combination of the above, thereby radically
improving scalability and adaptivity.
The key insight is to explore a distributed hash table

(DHT)-based peer-to-peer (P2P) model to re-architect FL sys-
tems. The P2P model is predominantly used in file-sharing
applications (e.g., BitTorrent [1], Storj [13], Freenet [3]), peer-
assisted CDNs [108], and blockchain [40]. In the P2P model,
each node is equal to the others, having the same rights and
duties. There is no central server. All nodes work collabora-
tively to accomplish a task or deliver a service. For example,
in BitTorrent [1], a user can download a file frommany other
users that already have the file. At the same time, the user
also uploads the file for many others who ask for it. Similar
to BitTorrent, where all peers collaboratively undertake the
task of file sharing, we enable all edge nodes to collabora-
tively undertake the task of FL training and testing for a
massive number of applications simultaneously.

Totoro introduces three innovations to realize its fully de-
centralized design: a locality-aware P2Pmulti-ring structure, a
publish/subscribe-based forest abstraction, and a bandit-based
path planning model.

First, all edge nodes are self-organized into a scalable DHT-
based P2P overlay. Totoro’s locality-aware P2P multi-ring
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Figure 2. The data pipeline in a typical FL framework.

structure ensures edge administrative isolation, enabling ef-
ficient local processing of FL tasks and preventing private
control flows from entering other edge sites.

Second, built on top of the locality-aware P2P multi-ring
structure, Totoro introduces a publish/subscribe-based forest
abstraction for model broadcast and gradient aggregation.
It decouples the prevailing centralized architecture of FL
systems into a “fully” decentralized architecture, where each
FL application can be assigned an independent dataflow tree
that operates with maximum independence, thus radically
improving the scalability of FL systems.
Third, since Totoro runs in a highly dynamic distributed

environment in which link disconnections and stragglers are
inevitable, model broadcast and gradient aggregation may
experience significant delays. Totoro introduces a bandit-
based exploitation-exploration path planning model that can
dynamically replan the data transfer paths to adapt to the
edge dynamics.

Summary of results. We implement Totoro on top of the
open-source Pastry DHT [9] and Keras [5] software stacks.
We evaluate Totoro across various FL tasks with real-world
datasets on 500 Amazon EC2 servers. Compared to state-
of-the-art FL systems [7, 53], Totoro scales more gracefully
with the number of concurrently running FL applications
and edge nodes, and dramatically improves scalability and
load balance by distributing many masters fairly across large-
scale edge networks without overburdening any single node.
When performing concurrently running FL applications’
tasks, Totoro speeds up the total training time by 1.2×−14.0×,
achieves 𝑂 (𝑙𝑜𝑔𝑁 ) hops for model dissemination and gradi-
ent aggregation with millions of nodes (𝑁 ), and efficiently
adapts to the unreliable edge networks and churn.

Contributions. This paper contributes the following:
• Problem: We study the software architecture of existing
FL systems and discuss the limitations of applying FL to
practical edge networks.

• Key idea: Totoro explores the DHT-based P2P model to
propose a novel, fully decentralized “many masters/many
workers” architecture that radically improves scalability
and adaptivity. To the best of our knowledge, we are the
first to propose a fully decentralized FL engine for edge
networks.

• Totoro design & implementation: Totoro introduces three in-
novations to realize its design: a locality-aware P2P multi-
ring structure, a publish/subscribe-based forest abstrac-
tion, and a bandit-based path planning model.

• Results: Evaluation shows Totoro’s significant scalability
and adaptivity gains over the state-of-the-art.

2 Background and Challenges
We start with a quick primer of the software architecture
used in state-of-the-art federated learning (FL) frameworks
(§2.1). Next, we highlight the challenges that we face when
applying FL to real-world edge networks (§2.2).

2.1 Federated learning system architecture
State-of-the-art FL frameworks (e.g., Meta’s PAPAYA [50],
LinkedIn’s FLINT [93], Google’s federated learning frame-
work [26], IBM Federated Learning framework [66], and Ap-
ple’s federated task processing system [73]) commonly adopt
a centralized or hierarchical “single master/many workers”
architecture. In this architecture, the master is typically de-
ployed on a parameter server, acting as a coordinating service
provider without data. The workers, on the other hand, con-
nect to numerous edge devices and serve as both the data
owners and beneficiaries of federated learning.
Figure 2 illustrates the data pipeline between these com-

ponents in a typical FL framework.
The high-level design involves two parts: the parameter

server that runs the “master”, and the end-user devices that
run the “workers”. The parameter server comprises three
main components: Coordinator, Selector, and Aggregator.
While the number of Selectors and Aggregators can scale
elastically based on the workload demand, there is only one
Coordinator. We summarize the functions of these compo-
nents as follows.

Coordinator. The Coordinator performs three main func-
tions:
• Task Assignment. Whenever a new FL application is submit-
ted to the system, the Coordinator assigns the application
to a single Aggregator based on the workload among Ag-
gregators and the estimated workload of the application
such as application concurrency and model size.
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• Client Assignment. For each available client, the Coordina-
tor constructs a list of eligible applications. The Coordina-
tor assigns each client to an application.

• Task Migration. The Coordinator moves applications be-
tween Aggregators when it detects failed or overloaded
Aggregators.

Aggregator. The Aggregators are persistent and stateful to
avoid a substantial cold start overhead for a new application.
Each Aggregator is responsible for one single FL application
and carries out three main responsibilities.
• Gradient Aggregation. Once a client completes training,
it uploads the trained serialized gradient update to the
server. This update is then pushed into an in-memory
queue on the Aggregator, which aggregates client gradient
updates to produce new versions of the server model of
an application.

• Client Guidance. The Aggregator guides clients into run-
ning the client protocol, such as downloading, uploading,
and training configurations, by responding clients requests
from the Selector.

• Client Tracking. The Aggregator is responsible for tracking
(i) if clients are satisfied with their assigned applications,
and (ii) if clients are still eligible for their assigned ap-
plications. The tracking information will be used by the
Coordinator to run client assignments.

Selector. The Selector is the only component that directly
communicates with clients and plays two roles:
• Task Advertisement. The clients check in with the Selector
and report their eligibility for available applications. The
Selector summarizes client availability for the Coordinator.

• Request Forwarding. When a client is assigned an eligible
application. The Selector forwards the client to the Aggre-
gator responsible for that application. The Selector also
routes clients’ requests to the corresponding Aggregator,
such as model broadcasting, and reporting client status
and gradient updates.

2.2 Challenges
2.2.1 Challenge #1: Scaling gracefully with the num-
ber of diverse FL applications and edge nodes. Key con-
siderations in addressing this challenge include:

1. Distributed task management. As shown in Figure 2,
existing production FL systems predominantly rely on one
single instance of the Coordinator to instruct Aggregators
and Selectors to handle all FL applications’ training and test-
ing activities. While this hierarchical architecture scales well
in datacenter platforms, it may encounter scalability issues
in edge systems characterized by millions of edge nodes
and numerous concurrently running FL applications. What
makes it more challenging is that the edge network com-
prises several edge providers, each administering a disjoint
set of edge nodes, and thus, there is a critical lack of a global
view of the workloads and resources. The lack of a global

view makes it difficult for existing production FL systems
to spread FL tasks evenly across edge nodes. This makes it
challenging to scale gracefully with new edge nodes and new
coming FL applications, leading to prolonged total training
time.

2. Application-specific customization. With the emer-
gence of new use-case scenarios, FL applications are becom-
ing increasingly diverse. This calls for flexible designs of
participant selection algorithms [33, 55, 71], compression
techniques [18, 20, 24, 35], and communication protocols
(e.g., synchronous [69], semi-synchronous [86], or asynchro-
nous [99]) to cater to these varying needs. Unfortunately,
existing FL systems often share the same parameter server
among many applications and restrict FL policies to a fixed
one, limiting the system’s ability to accommodate diverse
FL policies. To support application-specific customization,
we have to rely on multiple different FL frameworks, at the
expense of efficiency, maintainability, and simplicity.

2.2.2 Challenge #2: Adapt to practical edge network
conditions such as varying bandwidths, unreliable links,
high churn, and workload surges. The second challenge
arises from the first one. To scale with massive FL applica-
tions, what the cloud administrators usually do is to partition
all nodes into many sets and assign a parameter server per
each set of nodes in a static manner (e.g., one parameter
server per rack). While this assignment approach may work
well in datacenters, it lacks the agility to adapt quickly to
edge platforms that have millions of resource-constrained
nodes.
This is because the edge environment imposes unique

difficulties: (1) Edge network link delays are unpredictable
and vary stochastically due to unreliable links and random
access protocols (e.g., in wireless networks), client mobil-
ity (e.g., in mobile ad-hoc networks), and randomness of
demand (e.g., workload surges) in arbitrary (and dynamic)
geographical edge locations, and (2) Edge nodes fail or lag
unexpectedly (e.g., due to signal attenuation, interference,
and wireless channel contention). However, unlike datacen-
ter servers, edge nodes have limited computing resources
(few-core processors, little memory, and little permanent
storage [21]) and they have no backpressure. As such, there
is little room to adapt to the edge dynamics or handle strag-
glers by over-provisioning resources or replicating links like
previous studies. Efforts should be made to dynamically re-
plan the data transfer paths to adapt to the edge dynamics.

3 Related Work
This section discusses existing FL system designs and their
shortcomings for deployment in edge platforms (Table 1).

Centralized FL systems. The centralized server-client ar-
chitecture is widely used in state-of-the-art FL systems such
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Federated learning systems Architecture
Central
parameter
server

Computing
environment

Master/worker
communication
structure

Type of
learned
model

Type of
adversarial
model

Scale to
massive diverse
applications

Adapt to
edge
networks

FedAT [34], TiFL [33], Oort [55] Centralized ✓ Datacenter Hub-and-spoke Global consensus Non-Byzantine ✗ ✗
Client-edge-cloud [64], Edge-DemLearn [72] Hierarchical ✓ Edge Hub-and-spoke Global consensus Non-Byzantine ✗ ✗
BDSGD [89], Pu et al. [74] Distributed ✓ Datacenter Hub-and-spoke Global consensus Non-Byzantine ✗ ✗
Sol [54], Gaia [49], WeightGrad [19] Distributed ✓ Cloud Hub-and-spoke Global consensus Non-Byzantine ✗ ✗
𝐷2 [88], BrainTorrent [81], Lalitha et al. [58] Decentralized ✗ Datacenter P2P (one-hop neighbor) Global consensus Non-Byzantine ✗ ✗
ByRDiE [101], BRIDGE [41], Gupta et al. [45] Decentralized ✗ Datacenter P2P (one-hop neighbor) Global consensus Byzantine ✗ ✗
Bellet et al. [23], Vanhaesebrouck et al. [91] Decentralized ✗ Datacenter P2P (one-hop neighbor) Personalized Non-Byzantine ✗ ✗

Totoro Decentralized ✗ Edge Dynamic-structured tree Global consensus Non-Byzantine ✓ ✓

Table 1. Overview of state-of-the-art federated learning system designs compared to Totoro.

as Oort [55], FedAT [34], TiFL [33], and FEDRECON [82]. In
these systems, a powerful centralized parameter server and
sufficient node-to-server bandwidth are provided to main-
tain the communications between the parameter server and
clients. These systems focus on optimizing participant selec-
tion strategies [33, 34, 55], improving communication effi-
ciency [46, 62, 69, 78], taking data heterogeneity [60, 77], or
ensuring privacy [43, 44, 70]. For example, many algorithms
have been proposed to reduce the communication overhead
concentrated on the central server by reducing communica-
tion rounds with local updates allowance [63, 94, 102], em-
ploying compression techniques to reduce the transmitted
bits [22, 79, 92], and sampling a subset of clients [33, 34, 55].
While these systems work well in resource-rich datacenters,
the centralized control plane with a static assignment of pa-
rameter servers may not adapt well to resource-constrained
edge settings with millions of nodes, numerous FL applica-
tions, and unreliable network links.

Hierarchical FL systems. In hierarchical FL systems, an
intermediate layer (e.g., edge servers) is inserted between
the central server and client devices to perform partial ag-
gregations on distributed local models before the global ag-
gregation. The intermediate layer helps mitigate the non-
independent and identically distributed (non-IID) effects of
client data [72] and reduce the communication burden on the
central server [17, 64, 65]. For example, Abad et al. [17] em-
ploy small cell-base stations to orchestrate federated learning
among mobile users and periodically exchange model up-
dates with the macro-base station for global model learning.
Although this structure enhances scalability with additional
aggregators, the aggregators can become points of failure,
causing disconnection between the central server and client
devices and interrupting the training process.

Peer-to-peer FL (P2PFL) systems. P2PFL is a distributed
learning protocol without a central parameter server. The
key idea is to leverage P2P communication between indi-
vidual clients for exchanging model updates. Model aggre-
gation and updates are performed locally on client nodes
with the acquired gradients from their one-hop neighbors.
Previous P2PFL research considered design from different

angles: adversarial models (non-Byzantine vs Byzantine set-
tings) and learned models (global consensus vs personal-
ized). Non-Byzantine algorithms [58, 81, 88] focus on im-
proving convergence speed. Conversely, Byzantine algo-
rithms [41, 45, 101] aim to ensure that the trained model re-
mains close to the model learned without adversaries. Global
consensus learning [41, 45, 58, 81, 88, 101] aims to generate a
single global model at the end of training, while personalized
learning [23, 91] allows each peer to train a unique model.
However, these efforts mostly focus on novel algorithm de-
velopment and assume idealized datacenter environments,
neglecting real-world edge dynamics such as varying band-
widths, unreliable links, and high churn. Totoro backs up
the P2PFL work with cross-layer system support to imple-
ment these protocols in practical edge networks. Universal
ring [32] provides services to form separate overlays but
it can not ensure geographic diversity and administration
isolation. SplitStream [31] proposes to split the content into
𝑘 stripes and to multicast each stripe using a separate tree in
order to load balance forward traffic over P2P nodes. How-
ever, when a gradient update from a worker is split into
several stripes and sent via separate trees, the intermediate
nodes cannot run intermediate gradient aggregation, and the
whole aggregation overhead would overwhelm the master.

Geo-distributed ML systems. Federated data analytics has
been a hot topic of interest in geo-distributed storage [90]
and data processing systems [54, 103] that attempt to reduce
latency (e.g., Sol [54]), save bandwidth (e.g., WeightGrad [19],
Gaia [49]) or optimize resource usage [51, 95]. These systems,
however, mostly inherit MapReduce’s “single master/many
workers” architecture that relies on a monolithic scheduler
for scheduling all ML tasks and thusmay not scale to the edge
dynamics. For example, Sol is built on top of the Spark stream
processing engine [12] which has only one master. These
projects complement Totoro by offering resource optimiza-
tion and incentive mechanisms, whereas Totoro provides
them with scalable system support.

4 Totoro design
Totoro proposes a novel scalable FL engine for practical edge
networks. To achieve this, Totoro incorporates several key
techniques and components, which we describe in detail.
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Figure 3. The Totoro system overview.

4.1 Overview
Totoro’s system goals are:
• Scalability. Totoro can scale to process a vast number of
FL applications’ tasks simultaneously on millions of edge
nodes without introducing any centralized bottleneck.

• Adaptivity. Totoro can quickly adapt to the practical edge
networks characterized by varying bandwidths, unreliable
links, high churn (nodes join and leave), and workload
surges in arbitrary geographical edge locations.

• Good FL performance. When handling a vast number of FL
applications, Totoro can speed up the training process for
each of them.
As shown in Figure 3, Totoro has three layers: a locality-

aware P2P multi-ring structure, a publish/subscribe-based
forest abstraction, and a high-level API.

Layer 1: locality-aware P2P multi-ring structure. All
distributed edge nodes are self-organized into a DHT-based
P2P overlay. Each node has a unique 128-bit NodeId in a
very large circular NodeId space. In an edge network with 𝑁
nodes, the DHT-based P2P overlay guarantees that, nomatter
where the source node is, any FL data (e.g., model or gradi-
ent) can be routed to any destination node within 𝑂 (𝑙𝑜𝑔𝑁 )
hops. Compared to existing DHTs studies [80, 85, 107], our
innovations are: (1) Totoro divides the original single P2P
ring structure into many smaller, more manageable locality-
aware P2P multi-ring structures that enable locality-aware
FL processing; and (2) Totoro designs a new boundary-aware
two-level routing table that ensures administrative isolation
for privacy concerns.

Layer 2: publish/subscribe-based forest abstraction. Built
upon Layer 1’s locality-ware P2Pmulti-ring structure, Totoro
introduces a new publish/subscribe-based forest abstraction
that manages a vast number of FL applications in a scal-
able manner. Each FL application is assigned a dynamically-
structured dataflow tree that operates with maximum inde-
pendence, responsible for disseminating the model from the
master to the workers and aggregating the gradients from the
workers to the master. These trees together form a “forest”.
Our innovations are (1) a fully decentralized architecture—
unlike other federated learning systems, our system does
not have a static assignment of parameter servers. Instead,
any edge node can be automatically promoted as a param-
eter server (master) when workload surges, which signif-
icantly improves load balancing and scalability. (2) DHT-
based routing—the time complexity of model propagation
and gradient aggregation is limited to 𝑂 (𝑙𝑜𝑔𝑁 ) hops.

Layer 3: high-level API. We provide a high-level API to
abstract away the complexities of P2P overlay construc-
tion, dynamic-structured dataflow tree construction, model
dissemination, and gradient aggregation. Totoro supports
application-specific customization, allowing application own-
ers to set their own FL policies.

4.2 Layer 1: locality-aware P2P multi-ring structure
Many times, geographic diversity or location matters for
training FL applications. For example, a road traffic detection
application may require nodes with varying weather condi-
tion information in different geographic locations. Training
a model on a medical disease prevalent in a certain region
may require information from a specific location.

Therefore, we organize distributed edge nodes into a locality-
aware P2P multi-ring structure to enable locality-aware FL
processing.
First, we organize distributed edge nodes into a DHT-

based P2P ring overlay, which is similar to the BitTorrent
nodes that use the Kademila DHT [68] for “trackerless” tor-
rents. Each edge node is assigned a unique 128-𝑏𝑖𝑡 NodeId
in a very large circular NodeId space (e.g., 0 ∼ 2128). NodeIds
are used to identify edge nodes and route FL data (e.g., model
or gradient) over large-scale edge networks.

To do that, each node needs to maintain three data struc-
tures: a routing table, a leaf set, and a neighborhood set.
• Routing table is used for routing FL data. It consists of
node characteristics organized in rows by the length of the
common prefix. The routing works based on prefix-based
matching. Every node knows𝑚 other nodes in the ring and
the distance of the nodes it knows increases exponentially.
The routing jumps closer and closer to the destination,
like a greedy algorithm, within ⌈log2𝑏 𝑁 − 1⌉ hops, where
2𝑏 − 1 is the routing table’s entry size.

• Leaf set is used for rebuilding the routing tables upon
failures.
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Figure 4. The workflow of Totoro’s publish/subscribe-based “forest” abstraction.

• Neighborhood set contains a fixed number of nodes that
are “physically” closest to that node for maintaining the
locality properties.
Second, we divide the original large P2P ring into𝑚 smaller,

more manageable, locality-aware rings, which we call “multi-
rings”, using Ratnasamy and Shenker’s distributed binning
algorithm [75] (𝑚 is a configurable parameter). Each ring is
an “edge zone” and is characterized by a maximum desired
network round-trip time (RTT), called diameter.
Third, we design a new routing table to enable adminis-

trative isolation. The challenge is, how to achieve path con-
vergence to enable administrative isolation, i.e., data paths
from different nodes in an edge site should converge at a node
in that edge site? Existing DHTs [68, 76, 80, 85, 107] do not
guarantee path convergence as those systems try to optimize
the search path to reduce response latency. To route a packet
to an arbitrary destination key, the packet will be routed to
the destination node in another site as long as it has a longer
NodeId prefix matching the key. To address this challenge,
we make the following changes to existing routing tables:
(1) each NodeId now has (𝑚 + 𝑛)-bit, where the𝑚-bit pre-
fix presents the zone Id and the 𝑛-bit suffix represents the
NodeId within a zone. Let 𝑃 denote the prefix of NodeId,
i.e., 𝑃1...𝑃𝑛 . Let 𝑆 denote the suffix of NodeId, i.e., 𝑆1...𝑆𝑛 .
Then the NodeId equals 𝐷 = 𝑃 ∗ 2𝑛 + 𝑆 ; correspondingly (2)
each node’s routing table will have two levels: the level 1
routing table and the level 2 routing table. The 𝑖𝑡ℎ entry in
the level 1 routing table with𝑚 entries at peer 𝑥 equals to
(𝑃𝑥 + 2𝑖−1)mod 2𝑚 ∗ 2𝑛 . The 𝑖𝑡ℎ entry in the level 2 routing
table with 𝑛 entries at peer 𝑦 equals to (𝑆𝑦 + 2𝑖−1)mod 2𝑛 .
To achieve administration isolation, the administrator of

an edge site can leverage the level 1 routing table to control
the data flow among different edge zones. For example, when
an FL application should be running only within an edge
site, any packet generated by that FL application should only
travel within this edge site. Administrators can check the
destination of packets. If the packet’s destination shares a
different prefix with the administrator’s zone Id, the admin-
istrator can block the packet before routing it outside the
edge zone.

4.3 Layer 2: publish/subscribe-based forest
abstraction

Built upon Layer 1, Totoro introduces a new publish/subscribe-
based “forest” abstraction for managing a vast number of FL
applications in a scalable manner. Specifically, our goal is
to achieve a balanced distribution of masters for hundreds
of thousands of FL applications, ensuring that they are not
concentrated on a few overloaded nodes.
The key innovation is leveraging DHTs to decompose

the FL system architecture from 1:n to m:n, where each FL
application can be assigned a dynamic-structured dataflow
tree that operates with maximum independence, thereby
radically improving load balance and scalability. A DHT is
a hash table that partitions the key space and distributes
the parts across a set of nodes, providing a lookup service
similar to a hash table. The trick with DHTs is that the node
that gets to store a particular key is found by hashing that
key, so in effect, the hash-table buckets are now independent
nodes in a network.
We utilize the fully decentralized nature of DHT to pro-

cess FL applications’ tasks at extreme scale: unlike other
FL systems, Totoro does not have a static assignment of a
parameter server. Instead, the parameter server is broken
down into many components, such as the coordinator, client
selector, and aggregator. Any edge node can act as any FL
application’s coordinator, aggregator, client selector, worker
(participating edge device), or any combination of the above,
thereby radically improving load balance and scalability.

Figure 4 lays out the construction of the publish/subscribe-
based “forest”. It has the following steps.

Built on top of Layer 1, all edge nodes are structured into a
DHT-based P2P overlay. Here we use one ring as an example.
The DHT-based P2P overlay guarantees that: given a message
and a key, no matter where the source node is, the message
can be reliably routed to the node whose NodeId is numerically
closest to that key, within ⌈log2𝑏 𝑁 − 1⌉ hops, where 2𝑏 − 1 is
the routing table’s entry size.
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Join(IP, port, site)
Edge node joins the DHT-based P2P overlay network.
CreateTree(app_id)
Application owner creates a dynamic-structured dataflow tree and
configures the parameters (e.g., fanout).
Subscribe(app_id)
Edge node sends a JOIN message to subscribe to a dynamically-
structured dataflow tree with the topic equal to app_id. Application
owner can specify her client selection function in the API.
Broadcast(app_id, object)
Application’s master disseminates model to workers along its
dynamically-structured dataflow tree. Application owner can spec-
ify her compression function in the API.
onBroadcast(app_id, object)
Callback. Invoked when the worker receives any model or updates
from the application’s master.
Aggregate(app_id, object)
Application’s master aggregates updates from the workers to the
root. Application owner can specify her aggregation function in
the API.
onAggregate(app_id, object)
Callback. Invoked when any internal node receives updates from
a child node.
onTimer(app_id)
Callback. Invoked periodically. Application’s master uses it to get
the information about the progress of training (e.g., round_num,
accuracy, straggler_id) and inference.

Table 2. Totoro API.

The first step is to construct application-based logical
“trees” of nodes and ensure that these trees are well balanced
over the large-scale edge topologies (Figure 4 left).
a. When any new FL application is launched, we calculate

the application’s AppId, which equals the cryptographic
hash of the application’s textual name, the creator’s pub-
lic key, and a random salt, AppId=hash(“FL application”).
The hash is computed using the collision resistant SHA-1
hash function, ensuring a uniform distribution of AppIds.

b. Then the edge node processing the application’s data
routes a JOIN message using AppId as the key. Since all
nodes belonging to the same application use the same key,
their JOIN messages eventually arrive at a rendezvous
node, with NodeId numerically close to AppId. The ren-
dezvous node is set as the root of this application’s tree.

c. The unions of all JOIN messages’ paths are registered
to construct the tree, in which the internal node, as the
forwarder, maintains a children table for the group con-
taining an entry (IP address and AppId) for each child.
All of the trees together form a “forest” abstraction.

d. For each application’s tree, we designate the root node as
the master, the internal nodes as the coordinator, aggre-
gator, and client selector components, and the leaf nodes
as the workers (participating edge devices).

Rationale: (1) Since different applications have different Ap-
pIds, the paths and the rendezvous nodes of their spanning
trees will also differ, resulting in an even distribution of trees
across all edge nodes. (2) Because all nodes are equal, each
node can serve as a leaf, internal, or root node for differ-
ent applications, thus removing the scalability bottleneck
without overburdening any single node.

The second step is to implement a topic-based publish/
subscribe messaging protocol within the dataflow tree. Each

FL application has a “topic”. The master is the “publisher”
and the workers are the “subscribers”.
a. Model broadcast. The master disseminates the FL model

to the workers along the tree. Then each worker inde-
pendently trains a local model and computes the model
updates (e.g., gradients and weights) on the local data.

b. Gradient aggregation. Once the workers have completed
the computation, the master aggregates model updates
from the workers, in which each level of the tree pro-
gressively aggregates the updates from tree leaves to
the root. To meet the diverse needs of different applica-
tions, owners can specify different aggregation functions
in their trees. For instance, FedAvg [69] works well in
most situations, while FedProx [60] demonstrates supe-
rior performance in highly heterogeneous settings for
more stable and accurate convergence.

Rationale: (1) Due to the loosely coupled interaction between
the publisher and subscribers, Totoro can support simultane-
ously a large number of dataflow trees with a wide range of
tree sizes, and a high rate of membership turnover. (2) The
use of DHTs enables the efficient construction of aggregation
trees and multicast services, as their converging properties
guarantee model broadcast or gradient aggregation to be
fulfilled within only 𝑂 (𝑙𝑜𝑔𝑁 ) hops, which places an upper
bound on worst-case latency for data transfers.

4.4 Layer 3: high-level API
We abstract key components of Totoro to provide an easy-to-
use API (see Table 2). Totoro supports application-specific
customization, allowing application owners to set their own
FL policies. The Pastry DHT and Scribe multicast infras-
tructure are written in Java, with end-user functionality en-
capsulated in a Python API. This is done so that users do
not have to deal with two libraries in separate languages,
and thus Totoro can be easily integrated with popular FL
frameworks such as Keras [5], PySyft [11], and TensorFlow
Federated [15].

Application-level customization. To prevent potential leak-
age of model weights to other nodes, application owners
can specify various privacy techniques, such as differential
privacy [43], secure aggregation [50], and homomorphic en-
cryption [104]. Nodes that subscribe to an FL application
adhere to the privacy technique specified by that applica-
tion during the FL process. For example, if an application
owner launches an FL application and specifies the use of
differential privacy with Gaussian noise to secure weights,
the edge nodes as the master, coordinator, aggregator, and
client selector will operate in accordance with the privacy
technique. Similarly, the leaf nodes, serving as workers, will
apply Gaussian noise to local training. Morever, application
owners can use more fine-grained and dedicated third-party
libraries, such as Istio [4], for fine-grained enforcement of
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traffic policies, complementing Totoro’s packet-wise traffic
control.

Multi-rings. Application owners can specify whether their
applications span multiple zones. For example, a road traf-
fic detection application may require nodes with different
weather condition information in different geographical lo-
cations. If an application needs to ingest data sources across
multiple zones, it will traverse multiple zones (at most𝑚)
to build the dataflow tree, resulting in𝑚 ∗𝑂 (𝑙𝑜𝑔𝑁 ) routing
hops.

4.5 Failure recovery
In the case of node failures, we use a parallel recovery ap-
proach to repairing the dynamic-structured dataflow trees.

Each node in the tree periodically sends a keep-alive mes-
sage to its children nodes. If a child node cannot receive
keep-alive messages from its parent node, it suspects that
the parent has failed. In such a scenario, the child node routes
a JOIN message to AppId, which triggers the overlay net-
work to route the message to a new parent and creates an
alternative route to repair the dataflow tree.
The tree repair process scales well: failure detection is

done by sending messages to children nodes only. Failure re-
covery is also local. Only a small number of nodes (𝑂 (𝑙𝑜𝑔2𝑏𝑁 ))
is involved, in which 2𝑏 is the fanout of the tree.

5 Bandit-based Path Planning Model
Totoro introduces a new bandit-based path planning model
that can replan the data transfer paths in dynamically-structured
dataflow trees to adapt to unreliable edge networks.
In most real-world edge networks, link delays are unpre-

dictable and vary stochastically. When a link becomes slow,
it can disrupt communication with its child nodes and parent
nodes, thereby affecting the entire path from the leaves to
the root passing through this link in dataflow trees.
The challenge is that, in many cases, we don’t know the

quality of the network links in advance, such as the proba-
bility of successfully transmitting packets in wireless sen-
sor networks. This information is often obtained by actu-
ally sending packets and observing the outcomes. Therefore,
when we design the paths for model broadcast and gradient
aggregation, we face a dilemma between exploring new or
unknown links and exploiting well-known links. If we only
rely on the known paths, we may miss out on finding a bet-
ter path with faster communication or higher success rates.
However, if we explore too many new paths, it may result
in more packet losses and higher communication delays.

This is where Multi-Armed Bandit (MAB) algorithms [27,
36, 57, 87] come into play. Imagine a person is in a casino,
facing multiple slot machines, each with different payout
rates. She wants to maximize her winnings, but doesn’t know
the payout rates of the machines in advance. She can start
by trying different machines and recording the results. Over

time, she learns which machines offer higher payouts and
focuses her efforts on those machines.
Therefore, the path planning problem can be formulated

as a combinatorial MAB optimization problem: we explore
different paths to learn about their rewards (i.e., link quality),
and exploit the paths that offer the highest rewards. By doing
so, we can gradually improve our knowledge of the edge
networks to find the optimal path.

5.1 Problem formulation
The edge network can be modeled as a directed graph 𝐺 =

(𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set of links.
Given a single source-destination pair (𝑠, 𝑑) ∈ 𝑉 2, let P ⊆
{0, 1} |𝐸 | denote the set of all possible loop-free paths from
node 𝑠 to node 𝑑 in 𝐺 , where each path 𝑝 ∈ P is a |𝐸 |-
dimensional binary vector; for any 𝑖 ∈ 𝐸, 𝑝𝑖 = 1 if and
only if 𝑖 belongs to 𝑝 . In practical edge networks, each link
𝑖 ∈ 𝐸 can be unreliable. At any given time 𝑡 , we can use a
binary variable 𝑋𝑖 (𝑡) to represent whether a transmission
on link 𝑖 is successful. 𝑋𝑖 (𝑡) is a sequence of independent
random events, where each event is either a success or a
failure with some unknown probability 𝜃𝑖 . If we repeatedly
attempt to send a packet on link 𝑖 until it succeeds, the time
it takes (called the delay) follows a geometric distribution
with mean 1/𝜃𝑖 . Among the set of paths P, there must exist
a path 𝑝∗ that yields the minimal packet delay. Formally,
𝑝∗ ∈ argmin𝑝∈P 𝐷𝜃 (𝑝) , where 𝐷𝜃 (𝑝) is the total packet
delay of path 𝑝 .

Optimization objective. Our goal is to efficiently route 𝐾
packets (such as gradients in many rounds) from a worker
node to a master node, minimizing the overall time taken.
This can be measured in terms of regret, defined as the cumu-
lative difference of expected delay between the path chosen
by a policy and the unknown optimal path. Therefore, the re-
gret 𝑅𝜋 (𝐾) of policy 𝜋 up to the 𝐾-th packet is the expected
difference in delays between policy 𝜋 and the optimal policy
that selects the best path 𝑝∗ for transmission:

𝑅𝜋 (𝐾) = E

[
𝐾∑︁
𝑘=1

𝐷𝜋 (𝑘)
]
− 𝐾𝐷𝜃 (𝑝∗),

where𝐷𝜋 (𝑘) denotes the end-to-end delay of the 𝑘-th packet
under policy 𝜋 , the expectation E[·] is taken with respect to
the random transmission outcomes and possible randomiza-
tion in the policy 𝜋 , and 𝐷𝜃 (𝑝∗) is the packet delay of the
best path 𝑝∗. Our optimization objective is to find a policy 𝜋
among all policies Π such that

min
𝜋∈Π

𝑅𝜋 (𝐾) . (1)

5.2 Our algorithm
We propose a distributed hop-by-hop path planning algo-
rithm based on the semi-feedback bandit model [59, 87, 97].
The pseudo-code of the distributed hop-by-hop routing

algorithm is given in Algorithm 1. When node 𝑣 receives a
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Algorithm 1 Distributed hop-by-hop algorithm for node 𝑣
1: for time slot 𝜏 ≥ 1 do
2: Select link (𝑣, 𝑣 ′) ∈ 𝐸, where
3: 𝑣 ′ ∈ argmin𝑤∈𝑉 :(𝑣,𝑤 ) ∈𝐸 𝐶𝜏 (𝑣,𝑤), where 𝐶𝜏 (𝑣,𝑤) =
𝜔𝜏 (𝑣,𝑤) + 𝐽𝜏 (𝑤)

4: Update 𝜔𝜏 (𝑣, 𝑣 ′) of link (𝑣, 𝑣 ′) and 𝐽𝜏 (𝑣 ′) of node 𝑣 ′.

packet from a previous node at time slot 𝜏 , node 𝑣 leverages
a cost function 𝐶𝜏 (𝑣, 𝑣 ′) to evaluate each next possible node
𝑣 ′ ∈ 𝑉 that has an incoming link (𝑣, 𝑣 ′) ∈ 𝐸 from node 𝑣 .
The cost function𝐶𝜏 (𝑣, 𝑣 ′) contains two terms: the empirical
transmission cost with exploration adjustment 𝜔𝜏 (𝑣, 𝑣 ′) and
the long-term routing cost 𝐽𝑡 (𝑣 ′).
We first introduce the term 𝜔𝜏 (𝑣, 𝑣 ′). For any time slot 𝜏 ,

let 𝑛(𝜏) denote the packet number that is about to be sent or
already in the network. For any link, let 𝜃𝜏 (𝑣, 𝑣 ′) denote the
empirical success rate of link (𝑣, 𝑣 ′) up to time slot 𝜏 , that is
𝜃𝜏 (𝑣, 𝑣 ′) = 𝑠𝜏 (𝑣, 𝑣 ′)/𝑡 ′𝜏 (𝑣, 𝑣 ′), where 𝑠𝜏 (𝑣, 𝑣 ′) is the number of
packets routed through link (𝑣, 𝑣 ′) before the 𝑛(𝜏)-th packet
is sent and 𝑡 ′𝜏 (𝑣, 𝑣 ′) denotes the total number of transmission
attempts on link (𝑣, 𝑣 ′) up to time slot 𝜏 .
Therefore, the empirical transmission cost of link (𝑣, 𝑣 ′)

with exploration adjustment up to time slot 𝜏 is

𝜔𝜏 (𝑣, 𝑣 ′) = min
{ 1
𝑢
: 𝑢 ∈ [𝜃𝜏 (𝑣, 𝑣 ′), 1],

𝑡 ′𝜏 (𝑣, 𝑣 ′) · 𝐾𝐿
(
𝜃𝜏 (𝑣, 𝑣 ′), 𝑢

)
≤ log(𝜏)

}
,

where 𝐾𝐿(𝜃𝜏 (𝑣, 𝑣 ′), 𝑢) is the Kullback–Leibler (KL) diver-
gence number [52] between two Bernoulli distributions with
respective means 𝜃𝜏 (𝑣, 𝑣 ′) and 𝑢, i.e.,

𝐾𝐿(𝜃𝜏 (𝑣, 𝑣 ′), 𝑢) = 𝜃𝜏 (𝑣, 𝑣 ′) · log
(𝜃𝜏 (𝑣, 𝑣 ′)

𝑢

)
+
(
1 − 𝜃𝜏 (𝑣, 𝑣 ′)

)
· log

( 1 − 𝜃𝜏 (𝑣, 𝑣 ′)
1 − 𝑢

)
.

We next introduce the term 𝐽𝜏 (𝑤). Let P𝑤 denote the set
of loop-free paths from node𝑤 to the destination of a packet.
Then, 𝐽𝜏 (𝑤) is the minimum total empirical transmission
cost with exploration adjustment 𝜔𝜏 (𝑖) of a path 𝑝 in P𝑤 :

𝐽𝜏 (𝑤) = min
𝑝∈P𝑤

∑︁
𝑖∈𝑝

𝜔𝜏 (𝑖),

where 𝑖 ∈ 𝑝 denotes link 𝑖 in path 𝑝 .

6 Implementation
We implement Totoro on top of the Pastry (v.2.1) [9] and
Keras (v.2.7.0) [5] software stacks. Such implementation
choice is motivated by the following considerations: (1) Pas-
try [80] is a widely used overlay and routing network for the
implementation of a DHT similar to Chord [85]. Instead of
implementing another distributed system core, we can lever-
age Pastry’s excellent routing substrate (e.g., 𝑂 (𝑙𝑜𝑔𝑁 ) node

lookup), self-repairing routing table, message transportation
layer, and scalable application-level multicast infrastructure
(Scribe [30]). These features greatly simplify the develop-
ment process. (2) Keras [5] offers an easy and intuitive API
for neural networks. For example, Keras supports various
backend platforms such as Tensorflow [15], Microsoft Cog-
nitive Toolkit [6], Theano [16], and PlaidML [10].

Wemade the followingmajormodifications: (1)We changed
the original single P2P ring structure to a new locality-aware
P2P multi-ring structure. (2) We implemented a fully de-
centralized “many master/many workers” architecture by
utilizing DHTs and adding several data structures: a list of
operations for tracking routing paths, selecting masters and
workers, and constructing dynamic-structured training trees.
(3) We implemented a publish/subscribe messaging pattern
for scalable model propagation and gradient aggregation. We
introduced a serializationmechanism to convert trainedmod-
els into binary arrays for low-cost communication over edge
networks. (4) We implemented a bandit-based path planning
model to replan or repair the dynamically-structured train-
ing tree by collecting feedback, detecting node stragglers or
failures, and creating alternative routes.

7 Evaluation
We evaluate Totoro’s performance in a real-world distributed
environment that includes 500 Amazon EC2 nodes and uses
real-world computer vision (CV) and natural language pro-
cessing (NLP) datasets at different scales. We have the fol-
lowing key results.
• Totoro scales the number of masters to handle a varying
workload (from 125 to 2000 concurrently running FL ap-
plications) in real-world edge topologies (§7.2).

• Totoro achieves 𝑂 (𝑙𝑜𝑔𝑁 ) hops for model dissemination
and gradient aggregation with millions of nodes (𝑁 ) (§7.3).

• Totoro outperforms state-of-the-art FL systems (OpenFL [7]
and FedScale [53]) by speeding up the training time 1.2×-
14.0× to reach the equivalent model accuracy (§7.4).

• Totoro efficiently adapts to the unreliable edge networks
and node churns (§7.5).

7.1 Methodology
Experimental setup. Totoro is designed to operate in large
deployments with millions of edge nodes. However, such a
deployment is prohibitively expensive and impractical in an
academic environment. As such, we resort to emulating a
real-world edge setting on 500 AWS EC2 t2.medium nodes,
each of which has 2 vCPUs and 4GB of RAM, and 100 GB
of disk: (1) we use one JVM to represent one edge node and
emulate up to 100𝑘 edge nodes on the testbed; (2) we divide
the 100𝑘 edge nodes into geo-distributed zones based on the
real-world EUA dataset [56], which consists of 95,271 edge
nodes distributed across 12 Australian states and regions.
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(a) Real-world edge topologies gen-
erated from the EUA dataset [56].
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Figure 5. Totoro excels at scalability by fairly distributing many dynamic-structured dataflow trees across large-scale edge topologies.

20 40 80 160 320 640 1280 2560 5120
Number of Edge Nodes

0
500

1000
1500
2000
2500
3000

M
od

el
 D

is
se

m
in

at
io

n 
Ti

m
e 

(m
s)

ResNet-34 Model
ShuffleNet V2 Model

(a)Model dissemination time.

20 40 80 160 320 640 1280 2560 5120
Number of Edge Nodes

0

1000

2000

3000

4000

5000
G

ra
di

en
t A

gg
re

ga
tio

n 
Ti

m
e 

(m
s)

ResNet-34 Model
ShuffleNet V2 Model

(b) Gradient aggregation time.

500 1000 2000 5000
Number of Edge Nodes

0

2000

4000

6000

8000

M
od

el
 D

is
se

m
in

at
io

n 
Ti

m
e 

(m
s)

17
78

23
89

43
06

60
13

60
13

88
9 13

89 22
15 24

48

11
05 17

16

31
91

40
58

65
8 11

63 16
66 20

07

94
0 15

68

26
35

33
91

Fanout=2
Fanout=16

Fanout=4
Fanout=32

Fanout=8

(c)Model dissemination time of different fanouts.

Figure 6. Totoro scales with an exponentially increasing number of edge nodes for model dissemination and gradient aggregation.

Baselines. WeuseOpenFL (v.1.3) [7] and FedScale (v.0.5) [53]
as the baseline. FedScale is a scalable and extensible open-
source FL engine and benchmarking suite developed by Sym-
biotic Lab [14], which provides high-level and flexible API
to implement, evaluate, and deploy FL algorithms easily in
both standalone (single CPU/GPU) and distributed (multiple
machines) settings. OpenFL is an open-source framework
developed by Intel that runs FL in a single-machine setting.

Parameters. Totoro’s Pastry DHT is configured with a leaf
set of 24, max open sockets of 5000, and a transport buffer
size of 6 MB. We configure different fanouts 8 (23), 16 (24),
and 32 (25) for Totoro’s dataflow trees by changing the DHT
routing table base bit values to 3, 4, and 5, respectively. The
minibatch size of each node is 20 in image classification and
speech recognition tasks. The initial learning rate for the
ShuffleNet V2 model is 0.05 and 0.1 for the ResNet-34 model.

Metrics. We focus on Totoro’s scalability, adaptivity, and
FL effectiveness. To evaluate scalability, we measure how
numerous applications’ dataflow trees are distributed over
large-scale edge topologies. We also measure how Totoro
scales with the number of nodes in terms of model broadcast
time and gradient aggregation time. To evaluate the FL effec-
tiveness, we measure time-to-accuracy performance, which
is the duration of model training tasks on the testing set
to achieve the target accuracy. To evaluate adaptivity, we
measure regret comparison of different algorithms, path selec-
tion frequencies generated by different algorithms, and failure
recovery time. We also measure Totoro’s runtime overhead.

7.2 Scalability analysis
Figure 5a shows the real-world edge zones generated from
the EUA dataset [56]. Australian Communications andMedia
Authority publishes the EUA dataset [56], which contains
the geographical locations of 95,271 cellular base stations in
12 states of Australia (ACT: 931, ANT: 15, EXT: 8, ISL: 36, NSW:
24574, NT: 3137, QLD: 21576, SA: 7682, TAS: 3213, VIC: 18163,
WA: 15933, WLD: 3). We estimate the maximum round-trip
time based on the distances between nodes in the dataset,
and then use Ratnasamy and Shenker’s distributed binning
algorithm [75] to divide them into different zones.

Totoro fairly distributes masters. Figure 5b shows the
normal probability plot of the number of masters mapped on
each node in a 1000-node edge zone under stress testing. The
results show that when we create a large number of dataflow
trees like 500, 99.5% of the nodes are the roots of 3 trees or less.
The results illustrate a good load balance among participating
devices when performing a large number of FL applications’
tasks simultaneously. Figure 5c shows the distribution of
Totoro’s masters over different edge zones that have different
workloads. We assume densely populated topologies have
heavy workloads and sparsely populated topologies have
light workloads. The results show that Totoro automatically
scales the number of masters to handle the varying workload.

Totoro excels at load balancing. Figure 5d shows the dis-
tribution of all branches in 17 Totoro dataflow trees on 1946
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Task Dataset
Accuracy
Target

Model
Number of
Applications

Speedup for OpenFL [7] Speedup for FedScale [53]
Fan.=8 Fan.=16 Fan.=32 Fan.=8 Fan.=16 Fan.=32

Speech
Recognition

Google
Speech [96]

53.0% ResNet-34 [48]
5 3.7× 3.1× 3.5× 3.6× 3.0× 3.4×
10 6.4× 6.2× 6.9× 6.2× 6.0× 6.7×
20 13.0× 11.8× 14.0× 12.4× 11.3× 13.5×

Image
Classification

FEMNIST [29] 75.5% ShuffleNet V2 [67]
5 1.2× 1.4× 3.1× 1.4× 1.6× 3.4×
10 2.4× 3.2× 5.6× 2.7× 3.5× 6.1×
20 5.0× 5.5× 10.3× 5.6× 6.1× 11.5×

Table 3. Summary of time-to-accuracy comparison of Totoro, OpenFL, and FedScale. We set three different fanouts for Totoro’s dataflow
tree: 8, 16, and 32. Totoro outperforms state-of-the-art FL systems by speeding up the training time at different scales. The speedup gap
increases as the number of concurrently running applications’ tasks increases.
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Figure 7. Totoro reduces communication cost.

edge nodes over the 3 most popular topologies. Each tree has
a fanout of 8 (23) and a random number of depths (from level
1 to level 6). Different colors represent different levels of
nodes in a tree, with the darkest color representing the root
node. The results show that these dataflow trees are well bal-
anced across different topologies, not only the root nodes but
also the forwarder nodes and the leaf nodes, demonstrating
Totoro’s attractive scalability and load balancing properties.

7.3 Model dissemination and gradient aggregation
Totoro scales with #nodes. Figure 6a and Figure 6b show
Totoro’s model dissemination and gradient aggregation times
for an exponentially increasing number of edge nodes in
a single training tree. When the number of nodes grows
exponentially (from 20 to 5120), the dissemination time and
aggregation time only increase linearly. This is because the
dissemination time and aggregation time are limited by the
dataflow tree depth (𝑂 (𝑙𝑜𝑔𝑁 )) by using the DHT-based P2P
overlay. Therefore, when the number of edge devices grows
to the scale of millions or even billions, Totoro guarantees
that only a few extra hops are needed for them to receive
updated FL models or send updated gradients.

Totoro offers flexible tree fanouts. Figure 6c shows the
model dissemination time of different tree fanouts. We can
observe that a larger fanout leads to less model dissemination
time because it has a smaller tree depth. However, a larger
fanout tree is not always good: if an internal node fails or
leaves, the new one needs to rebuild many connections be-
tween the children nodes and the parent node to rebuild the
tree, and the new node may become an I/O bottleneck.

Totoro reduces communication cost. Figure 7 shows the
comparison of the traffic per node of Totoro and the baseline
FL systems. Communication is a critical bottleneck in FL
systems. We can observe that the additional network traffic
imposed by Totoro is small. The network traffic is increased
by only 1.19× for TCP and 1.29× for UDP when the number
of dataflow trees is increased by 10×. This is because when a
new training tree is created, it merely routes JOIN messages
toward the root of the tree using the overlay, adding overlay
links to reconstruct the tree without establishing a new con-
nection. Then the overhead for creating new dataflow trees
can be amortized over the overhead of the overlay.

7.4 Federated learning effectiveness
In this section, we evaluate Totoro’s performance on model
training when an increasing number of models (1 to 20) are
simultaneously trained on large-scale edge topologies, and
compare it with OpenFL [7] and FedScale [53]. Both FedScale
and OpenFL rely on a server-client architecture and leverage
a logically central coordinator to spawn aggregators and
orchestrate many distributed clients to collaboratively train
a model.

Totoro reduces the totalmodel training time. Table 3 sum-
marizes the results of time-to-accuracy comparison of Totoro,
OpenFL and FedScale.When 5∼20models are simultaneously
trained on the same platform, we notice that Totoro speeds
up the total training time 3.0×-14.0× to reach the equiv-
alent model accuracy on the middle-scale Google Speech
dataset [96]; speedup on the large-scale FEMNIST [29] dataset
is 1.2×-11.5×. The speedup gap increases as the number of
concurrently running applications’ tasks increases. This is
because both OpenFL and FedScale rely on a server-client ar-
chitecture where a logically central coordinator orchestrates
many distributed clients to collaboratively train a model.
When there are a massive number of models that need to
be trained simultaneously, the central coordinator needs to
handle them one by one on a first-come, first-served basis,
which causes large queuing delays. By contrast, Totoro’s
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Figure 8. Time-to-accuracy comparison of Totoro, OpenFL, and FedScale. When 5∼20 applications’ models are simultaneously trained,
Totoro speeds up the total training time 3.0×-14.0× to reach the equivalent model accuracy on the middle-scale Google Speech dataset.
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Figure 9. Time-to-accuracy comparison of Totoro, OpenFL, and FedScale. When 5∼20 applications’ models are simultaneously trained,
Totoro speeds up the total training time 1.2×-11.5× to reach the equivalent model accuracy on the large-scale FEMNIST dataset.
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Figure 12. Totoro achieves a stable recov-
ery time for many simultaneous failures.

distributed masters can train many models in parallel, thus
precluding them from being stuck in a central coordinator.

Totoro scales with #applications. Figure 8 and Figure 9
show the time-to-accuracy performance comparison of To-
toro, OpenFL, and FedScale. The results show that Totoro
scales well with a large number of applications’ training
tasks. Totoro takes almost the same total training time to
reach model convergence for training 1 model (15.41 hours),
5 models (15.43 hours), 10 models (15.44 hours), and 20 mod-
els (15.47 hours) when fanout is equal to 32. The rationale
behind the results lies in that (1) Totoro decomposes the
conventional “1:n” architecture into an “m:n” architecture,
which ensures that every peer can participate in the process
of model training, gradients calculation, and aggregation;
and (2) ideally, any peer in the system can act as a worker, a
master, a forwarder, or any combination of the above. This
helps avoid the scalability bottleneck caused by any single

node, auto-scale as needed, balance the workload, and im-
prove the scalability.

7.5 Adaptivity analysis
Adapt to heterogeneous nodes. To handle the heterogene-
ity of compute resources, we make resource-rich physical
edge nodes map to more “P2P nodes”, while letting resource-
constrained edge nodes only map to fewer “P2P nodes”. A
Pastry P2P node can be seen as a “logical” node. For exam-
ple, suppose there are three physical nodes with compute
resources being 2, 4, 8 CPU cores, respectively. Accordingly,
the physical nodes with 4 and 8 CPU cores can serve as 2
and 3 logical P2P nodes in the DHT-based P2P overlay, re-
spectively. The physical nodes with rich compute resources
are more likely to bear more computational overhead.

Adapt to unreliable networks. Figure 10 shows the re-
gret comparison of Totoro’s bandit-based path planning al-
gorithm and its counterparts (end-to-end routing [42] and
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Figure 13. Overhead comparison of Totoro and OpenFL.

next-hop routing [25]). End-to-end routing selects paths by
considering the lower confidence bound (LCB) [83]. Next-
hop routing selects the next hop based on empirical packet
delays. We can see that Totoro achieves lower regret. This is
because Totoro considers the packet delay not only of the
next hop but also of the subsequent path starting from the
next hop to the destination, which avoids selecting paths
with a low-delay first link but with a high overall delay.

Figure 11 shows the path selection frequencies generated
by different algorithms, in which each color grid shows the
frequencies of selecting the 𝑥𝑡ℎ path for each packet. The
𝑋 -axis represents the path in order from the best path to
the worst path. The 𝑌 -axis represents the sequential order
of packets. The baseline (optimal routing) always selects the
best path for each packet. Next-hop routing [25] sometimes
finds the best path, but it selects some mediocre paths as
well. End-to-end routing [42] is the last to find the optimal
path. Compared to them, Totoro finds the optimal path the
fastest and balances the exploration-exploitation tradeoff.

Adapt to node churns. Figure 12 shows the failure recovery
time for an exponentially increasing number of dynamic-
structured dataflow trees. Each tree has 5% of nodes that
fail or leave at the same time. The results show that Totoro
achieves a stable recovery time for many simultaneous trees’
failures. This is because each failed node can be quickly
detected and recovered by its neighbors through keep-alive
messages without having to talk to a central coordinator, so
many simultaneous failures can be repaired in parallel.

7.6 Overhead analysis
We train a feedforward model for text classification with a
single Totoro’s dataflow tree of 10 nodes and compare the
overhead with OpenFL.

CPU overhead. Figure 13a shows the CPU overhead com-
parison of Totoro and OpenFL. For a fair comparison, we
divide the CPU overhead into two parts: FL-related tasks,
and DHT-related tasks (including constructing P2P over-
lay, overlay maintenance, building dataflow trees, etc.). The
results show that Totoro uses less CPU than OpenFL for
FL-related tasks. For DHT-related tasks, Totoro only adds
negligible CPU overhead, demonstrating Totoro’s portability
to resource-constrained edge nodes.

Memory overhead. Figure 13b shows the memory overhead
comparison of Totoro and OpenFL. The results show that
Totoro uses less memory than OpenFL. The initial increase
in the memory overhead is due to the construction of the
P2P overlay, routing tables, neighborhood sets, leaf sets, and
dataflow trees. After the DHT starts functioning, no addi-
tional memory overhead is added in either the master (root
node) or the leaf nodes.

8 Conclusion
We present Totoro, a novel scalable federated learning engine
for edge networks. It presents three design innovations: a
locality-aware P2P multi-ring structure, a publish/subscribe-
based forest abstraction, and a bandit-based path planning
model. We evaluate Totoro on 500 Amazon EC2 nodes by
using real-world CV and NLP datasets at different scales. We
compare Totoro with the state-of-the-art and demonstrate
substantial advancements in scalability and load balancing,
while significantly speeding up the total training time for
many concurrently running applications, reducing the com-
munication overhead, and efficiently adapting to unreliable
edge networks and churns. Totoro and the workload data
will be open-sourced for use by the community.
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