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Abstract—Data privacy preservation has drawn much attention
in emerging machine learning applications. Decentralized learn-
ing among smart devices over wireless networks is thus developed
to guarantee data security and eliminate the involvement of
parameter servers to avoid transmission bottlenecks. However,
the previous research focuses on data compression and exchange
rules of model parameters among smart devices. Still, it neglects
the interplay between link cardinality, transmission power con-
sumption, and collision in transmission. To jointly optimize these
issues, in this paper, we first set collision and interference aside
and formulate a new optimization problem, named GreenDL, and
then extend GreenDL to be collision-aware, namely, GreenDL-
CA, by restricting the maximum degree of each smart devices. We
prove their hardness and propose two approximation algorithms
dubbed as CoTRAIN and CoTRAIN-CA for GreenDL and
GreenDL-CA, respectively. Experiment and simulation results
manifest that both CoTRAIN and CoTRAIN-CA reduce more
than 20% power compared with the other heuristics without
sacrificing the convergence rate in the decentralized learning
practices.

Index Terms—Decentralized learning, topology construction,
energy conservation, wireless communication, NP-hardness, ap-
proximation algorithm

I. INTRODUCTION

Nowadays, artificial intelligence (AI) has drawn much at-
tention and innovates numerous advanced applications [2].
However, AI models usually require considerable amount of
data for training, thereby giving rise to two following issues.
One is data security and privacy. The data required for training
are usually stored in smart devices of users [3]. The leakage
of data associated with personal information is thus the last
thing that users would like to encounter when enjoying AI-
related services [3]. Another is the need of powerful platforms
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for training. To collect and process enormous amount of data
from smart devices in a centralized fashion, powerful servers
meeting requirements of storage, computing, and bandwidth
for emerging service providers are getting more and more
impractical when the number of smart devices grows dras-
tically.1 To ease the above issues, collaborative learning has
been proposed to train a target model by multiple smart
devices of users with their local data [2], [5], [6]. Usually, a
centralized parameter server is required to aggregate different
local updates of model parameters from the smart devices for
the next round of training, while it may become a crucial
network bottleneck and limit the scalability [7].

To this end, decentralized learning (DL) does not aggregate
the model in the central server. Each smart device only
shares local updates of model parameters with its neighboring
smart devices in the mobile edge network via device-to-device
(D2D) transmission to locally derive new average model
parameters for the next round of training in DL. Remark that
messages here are forwarded to neighboring devices by one-
hop broadcasting to improve the transmission efficiency and
reduce the number of transmissions.2 It can be envisaged that
smart devices act as both a central parameter server and a
training unit at the same time. Eventually, DL will converge
and achieve consensus among the smart devices. DL has two
main advantages as follows: 1) It guarantees data privacy since
data are only accessed by their owners. 2) The central server
for parameter aggregation is no longer required. The following
two applications exhibit the advantages of DL concisely.
First, DL is exploited to improve cache performance of edge
computing for vehicular networks. The nearby vehicles own
the private data and collaboratively train a global model with
other vehicles via vehicle-to-vehicle (V2V) communications
to improve overall content caching scheme [10]. Besides, for
human activity recognition, WiFi sensing, and physiological
stress detection, employing DL with smart devices via D2D
communications mitigates the users’ privacy concerns [11],
while the edge server built in the base station is required to
collect the location information of smart devices and assign the
suitable neighbors to each smart device. Afterward, the base
station is only responsible for scheduling D2D communica-
tions among devices [12] until the target accuracy is achieved.

1Cisco predicts smart devices will grow to 13.1 billions by 2023 [4].
2The local update messages can be further compressed for better transmis-

sion efficiency [8], [9] while it is beyond the scope of this paper.
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(a) Accuracy vs # links (b) Converged accuracy vs # links

Fig. 1. Effect of number of links ranging [15, 105] on average accuracy in a
16-device network. (a) Assume the target accuracy is 70%, a fewer training
rounds comes from a higher links, and (b) a higher converged accuracy comes
from a higher links when the prespecified target round is 500.

Intuitively, a topology with more links has more data ex-
changes and is more likely to yield better training performance
(e.g., higher accuracy and fewer training rounds for conver-
gence) for DL. To further verify the interplay between link
cardinality (i.e., number of links) and training performance,
we implemented a DL framework [5] on a small network
that consists of 16 smart devices, where the trained model
has 2 convolutional layers and 3 fully connected layers and
the adopted dataset is CIFAR10 [13]. The more detailed
settings about the hyper-parameters can be found in Section
V. We evaluate the performance effect on accuracy and loss
with different numbers of links (i.e., 15, 40, 64, and 105
links). The effects of different link cardinality on the accuracy
and loss are shown in Fig. 1. The accuracy rates of 105-
link, 64-link, 40-link, and 15-link topologies achieve 70% at
the 84th, 118th, 180th, and 245th rounds, respectively, and
eventually converge to 78.1%, 77.8%, 73.1%, and 71.5%,
respectively. The above results show that more links in a
topology benefit the training performance of DL. To increase
the link cardinality in a topology, smart devices are inevitable
to use higher transmission power to expand the transmission
range to cover more neighboring devices and then incur higher
energy consumption during a round, while energy-efficient
communications are crucial for smart devices [14]. However,
the trade-off between training performance and transmission
power consumption has not been carefully explored for DL to
select adequate and energy-efficient links in topology.

Optimizing transmission power consumption while ensuring
link cardinality in the topology for DL to guarantee training
performance leads to new challenges as follows: 1) Discrete
power levels. Smart devices have to set a higher transmission
power to cover farther smart devices. Nonetheless, smart
devices are usually unable to support configurations over a
continuous domain but have a limited, discrete set of possible
transmission power levels [15]. A smart device may seriously
waste transmission power if covering inappropriate smart
devices whose locations are slightly beyond the coverage of
its previous transmission power level. 2) Symmetric wireless
links. Raising the transmission power level of only one smart
device may not connect one another. Two smart devices have
to set a sufficient power level to cover each other in the
transmission range. In addition, the topology with the selected
links should be connected. 3) Density-aware power selection.
Connecting smart devices close to each other tends to reduce

the overall transmission power. Moreover, the smart devices in
denser areas using high transmission power levels are inclined
to have more links than those in sparser areas. Overall, the
problem is quite challenging and different from traditional
energy-efficient broadcast tree problems3 since it has to jointly
decide which links should be selected to achieve the required
link cardinality (i.e., not just constructing a spanning tree) to
ensure the training performance and which transmission power
level should be used for each smart device to minimize the
transmission power consumption.

To address the challenges, we present Green Transmission
Power Level Allocation Problem for Decentralized Learning
(GreenDL). With the given parameters: 1) the smart devices
with discrete power levels in the network, 2) the required
transmission power level to connect each smart device pair,
and 3) a link cardinality ratio (i.e., a user-defined ratio of
requested link cardinality to total number of possible device
pairs), GreenDL asks for a set of links that satisfies the link
cardinality ratio and yields the minimum overall transmission
power consumption of smart devices. In addition, collisions
and interference may occur frequently when smart devices
send the packets (e.g., to exchange model updates with its
neighbors in DL) with a large transmission range. This issue
may prolong the communication time since transmissions that
interfere each other cannot be scheduled at the same time
slot. Therefore, we further extend GreenDL to consider the
issue, namely, GreenDL with collision awareness (GreenDL-
CA). Particularly, one more parameter, the maximum number
of nearby smart devices within the transmission range of each
smart device, is required to mitigate the interference during a
training round beside the three parameters aforementioned.

Then, we prove that GreenDL and GreenDL-CA are both
NP-hard and first design an efficient Collaborative Density-
Aware Power Level Allocation and Link Selection Approx-
imation Algorithm (CoTRAIN) for GreenDL. To jointly ad-
dress the above three challenges, CoTRAIN introduces a novel
notion, niche link set, that is, a set of links which connect the
smart devices that are close to each other in a dense area such
that the links have the lowest power consumption per link
cardinality in the network. Then, CoTRAIN introduces niche
indicator (detailed later) to evaluate sets of links and recog-
nize the niche link set in the network. Therefore, CoTRAIN
iteratively augments the set of selected links with the niche
link set until the link cardinality ratio is satisfied. We prove
that CoTRAIN achieves a logarithmic approximation ratio
(see Section IV). Following the rationale to design CoTRAIN,
we introduce CoTRAIN with collision awareness (CoTRAIN-
CA) for GreenDL-CA. The proved approximation ratio is also
applied to CoTRAIN-CA even though the devices are limited
to have at most the prespecified number of neighbors.

On the implementation side, the manifestation of effective-
ness of CoTRAIN and CoTRAIN-CA is threefold (see Section
V). First, the real-world dataset of Santander City [16] is
adopted to evaluate the performance of CoTRAIN/CoTRAIN-
CA and other naive heuristics so as to consider the physical

3The more detailed discussion and justification are presented in Section III
and Appendix A of the supplementary material.



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 3

locations of smart devices. Secondly, extensive experiments
are conducted to examine the performance of different meth-
ods with varying given parameters. Lastly, a lightweight deep
neural network (DNN) model is implemented in DL fashion
with the sets of links selected by different methods using
well-known dataset CIFAR-10 [13]. In addition, to consider
the impact of the non-independent-and-identically-distributed
(non-IID) data, we follow [17] to model the degree of data
skewness with which the different methods are evaluated.
Overall, CoTRAIN/CoTRAIN-CA are shown to conserve at
least 20% of power consumption than do the others while no
training performance (e.g., accuracy and loss with respect to
the classification task) and convergence rate are compromised.

The rest of this paper is organized as follows: Section II
exhaustively studies the background and the state of the art
in different aspects. The problem formulations and hardness
of GreenDL and GreenDL-CA are defined and proved in
Section III. Section IV presents the algorithms CoTRAIN and
CoTRAIN-CA for GreenDL and GreenDL-CA and analyzes
the approximation ratio. The results of simulations are shown
in Section V. Finally, Section VI discusses the future work
and concludes the paper.

II. RELATED WORK

A. Communication-Efficient Federated Learning Frameworks
and Mechanism Designs

Federated Learning (FL) is proposed to train the global
model locally via user devices with their data to avoid direct
data access [18]. To derive the global model for the next-
round learning, FL requires a parameter server to coordinate
and aggregate the local model updates from user devices.
Meng et al. show that FL might slow down convergence due
to local shuffling of SGD [19]. Many research works focus
on different perspectives to optimize the training efficiency.
Konečnỳ et al. present a method to optimize the transmis-
sion efficiency between central servers and devices utilizing
lightening transmitted data sizes [20]. Wang et al. analyze the
convergence rate via distributed gradient descent to achieve
the trade-off between the local training epoch and global
aggregation [21], [22]. Tran et al. decompose FL optimization
problems into convex-structured sub-problems [23]. Nishio et
al. maximize the number of selected devices for a round in
FL [24]. However, FL still struggles over the communication
bottleneck when the local model updates from the user devices
are sent to the parameter server for aggregation. Also, the
indispensable requirement of on-demand parameter servers is
another concern.

B. Communication-Efficient Decentralized Learning Frame-
works and Mechanism Designs

DL is first innovated by Tsitsiklis et al. [25], and it is
also called gossip algorithm. Different from FL, DL does
not require a parameter server to aggregate the local model
updates from user devices. Nedic et al. present an algorithm
to quantize (e.g., from 32-bit float point to 8-bit integer) the
local update of model parameters for data exchange. Tang et
al. devise a framework to quantize the difference between

the last and current local model parameters to reduce more
data exchange [26]. Li et al. develop a pipelined framework
which allows two consecutive computing iterations to overlap
on the timeline and mask the faster of the computation and
communication to reduce the training time [6]. Koloskova et
al. propose a decentralized stochastic gradient descent method,
CHOCO-SGD, for quantized and sparsified model updates
and theoretically and empirically prove the performance of
CHOCO-SGD for convex learning tasks [5]. Koloskova et al.
further show that CHOCO-SGD achieves a linear speedup of
convergence rate in the number of training devices compared
to SGD on a single node for arbitrary high compression ratios
on general non-convex functions, and non-IID training data
[27]. Koloskova et al. offer an unified DL framework package
for convex and non-convex learning tasks, and the theoretical
bound is proved under weak assumptions on gradient descents
[28]. However, none of them considers the link selection
for data exchange among devices in DL to guarantee the
training performance while minimizing the transmission power
consumption.

C. Mobile Edge Computing

Mobile Edge Computing (MEC) has emerged to handle the
massive data analysis and reduce latency between cloud and
user devices [29]–[31]. Xu et al. dynamically cache services
on the resource-limited edge servers to relieve the overhead
in backhaul networks [32]. He et al. offload the tasks to
the neighboring devices and edge servers to accelerate the
completion time [12]. Xiao et al. propose a distributed method
for fog nodes to jointly optimize energy consumption and
user experience [33]. Both S. Wang et al. and L. Wang et
al. aim at the problems of service migration according to user
location and mobility for the better user experience [34], [35].
Zhang et al. design a decentralized algorithm to orchestrate
the resources of multiple different service providers in MEC
networks to improve the user experience and maximize total
profit for the service providers [36]. However, none of them
employs the MEC servers to determine the D2D transmissions
among devices for data exchanging in DL so as to offload the
data traffic originally relayed by base stations and save more
transmission power.

D. Device-to-Device Communications and Applications

Device-to-device (D2D) communication has emerged as an
advanced technology since the number of users and appli-
cations are growing drastically resulting to the shortage of
resources and an increase in power consumption for trans-
missions [37]. In the field of vehicular ad hoc networks
(VANETs), Sun et al. propose a D2D-based scheme for power
control and resource allocation among vehicle-to-vehicle com-
munication in consideration of the high mobility of vehicles
[38]. Sun et al. follow the settings in [38] and formulate
an optimization problem to maximize sum rate with propor-
tional bandwidth fairness under the constraint of satisfying
the vehicular devices’ requirements on latency and reliability
[39]. Gu et al. explore more general use cases in VANETs,
and the proposed D2D-based vehicle-to-everything framework
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considers multiple simultaneous connections for each vehicle
equipped with multiple radio interfaces [40]. For Internet of
Things, Bello et al. exhaustively analyze state-of-the-art D2D
communication mechanisms in IoT devices and conclude that
they can significantly improve the application robustness and
network connectivity [41]. Wang et al. propose opportunistic
routing algorithms in D2D networks to enable the data traffic
of innovative applications, such as video steaming, multiplayer
gaming, and so on, to be offloaded from cellular network
[42]. Yang et al. make use of MEC servers that maintains
the information of devices in proximity to tackle the issue of
D2D discovery so as to offload the live streaming traffic from
mobile networks to D2D networks among mobile devices and
improve users’ QoE [43]. However, none of them puts focus
on the issues of training performance and power efficiency
derived from DL over D2D communications.

III. THE SCENARIO, GREENDL PROBLEM, AND ITS
EXTENSION

A. The Scenario

For each iteration in DL, every involved smart device has to
share its local updates of model parameters with the assigned
devices and aggregate the received updates as the new model
for the next-round training. However, in real-world scenarios,
smart devices tend to be selfish and have a lower willingness
to consume their bandwidth to relay the packets to the others
since they are usually equipped with limited resources [44],
[45] (e.g., low wireless bandwidth and limited discrete power
levels). Moreover, low-cost smart devices are inclined to lose
packets frequently and become the traffic bottlenecks of multi-
hop routing [46]–[50]. Such traffic bottlenecks can further
prolong the synchronous procedure of DL.4 Therefore, in this
paper, smart devices are assumed to share their data (i.e.,
local model update of parameters) only with the assigned
neighboring devices via one-hop D2D transmission instead of
multi-hop routing. On the other hand, the edge server built in
the base station [21] has to collect the location information
of devices and construct an energy-efficient communication
topology to indicate the neighboring devices for each device
[28]. After that, the base station is supposed to schedule
the D2D communications among the devices until the target
accuracy is achieved [23].

It is worth noting that unlike the Min-Power Symmet-
ric Connectivity problem (MPSC) [51] (i.e., the traditional
minimum-energy broadcast problem, see Definition 1 in Sec-
tion III-D), The devices in DL require a connected topology
with a set of adequate links instead of a spanning tree
alone. Therefore, our problem is more intractable than MPSC
because the number of its required links is independent of
the number of devices n while that is always n − 1 (i.e.,
the number of links in a tree) in MPSC [51]. Moreover,
MPSC does not support limited, discrete set of available power
levels, which is typical for low-cost smart devices. It thereby
motivates us to investigate a novel problem to construct such a
communication topology for data exchange among devices to

4The detailed discussion and justification for GreenDL and the synchronous
procedure of DL are provided in Appendix A of the supplementary material.

ensure the training performance while minimizing the power
consumption.

B. The Problem Formulation of GreenDL

In the following, we formally define the optimization prob-
lem, Green Transmission Power Level Allocation Problem
for Decentralized Learning (GreenDL). GreenDL considers a
mobile edge network G that consists of 1) a set V of devices
that are able to use device-to-device (D2D) communication
with a limited, discrete set of possible transmission power
levels P and 2) a set E of all possible links between smart
devices in V , where each possible link e ∈ E has a minimum
transmission power level τ(e).5 In addition, a user-defined
ratio ϕ ∈ [0, 1] is given to indicate a lower bound of the
link cardinality (i.e., link cardinality ratio) to guarantee the
training performance. Note that the notation table is shown in
Appendix B, and the examples of GreenDL are presented in
Appendix C of the supplementary material.

The decision variables in GreenDL are listed as follows:
1) the decision variable xvp ∈ {0, 1} denotes whether device

v ∈ V sets the transmission power level power as p ∈ P ,
2) the decision variable ye ∈ {0, 1} denotes whether link

e ∈ E is selected, and
3) the decision variable zduv ∈ {0, 1} denotes whether the

flow is steered along the link from u to v to build a path
from r to d ∈ V \ {r}, where u, v ∈ V and u 6= v.

The integer linear programming (ILP) is listed as follows.
The objective (1) is to minimize the total power consumption,
where P is the set of candidate power levels and xvp is the
decision variable. Note that the other decision variables ye, zduv
are used to constrain xvp, and thus they only appear in the
constraints (2)-(6).

minimize
xvp,ye,z

d
uv∈{0,1},

∀u,v∈V,u6=v,∀e∈E,∀p∈P,∀d∈V \{r}

∑
v∈V

∑
p∈P

xvp · p (1)

subject to∑
e∈E

ye ≥ ϕ|E|, (2)∑
p∈P

xvp = 1,∀v ∈ V, (3)

ye ≤
∑

p∈P:p≥τ(e)

xvp,∀e ∈ E,∀v ∈ V (e), (4)

∑
u∈V

zdru −
∑
u∈V

zdur = 1,∀d ∈ V \ {r}, (5a)∑
u∈V

zddu −
∑
u∈V

zdud = −1,∀d ∈ V \ {r}, (5b)∑
u∈V

zdvu −
∑
u∈V

zduv = 0,∀v, d ∈ V \ {r}, v 6= d, (5c)

ye ≥ zduv,∀e ∈ E,∀u, v ∈ V (e), u 6= v,∀d ∈ V \ {r}. (6)

Constraint (2) ensures an adequate number of links to
guarantee the training performance. Constraint (3) limits each

5To explore the intrinsic property of GreenDL, we assume that both two
end devices u and v are required to set the adequate transmission power
level, which is no less than the minimum transmission power level τ(e), for
communications in this paper.
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device to choose a configuration for transmission power.
Constraint (4) makes both devices with a possible link e
have to choose a transmission power level no less than the
minimum transmission power τ(e) to cover each other in the
transmission range, where V (e) denote the two corresponding
devices incident to link e. Flow-based constraints (5a)–(5c)
force the induced topology by the selected links to be con-
nected (detailed later in the following paragraph), where r is an
arbitrary device selected from V . Constraint (6) unions all the
selected links on the paths from r to every device d ∈ V \{r}
to induce the connected topology.

It is worth noting6 that constraints (5a)–(5c) aim to make
every device d ∈ V \ {r} have a path from r in the induced
topology to ensure the network connectivity. Constraint (5a)
assures that r has one outgoing link and no incoming link on
a path between r and d. Constraint (5b) guarantees that d has
no outgoing link and one incoming link on a path between
r and d. Constraint (5c) promises that that every device on
a path between r and d must have one outgoing and one
incoming links, while the other devices must have no outgoing
and incoming links.

C. GreenDL with Collision Awareness

Subsequently, we introduce GreenDL with collision aware-
ness (GreenDL-CA) to shorten the training time while prevent-
ing devices from serious collisions (or conflicts) during the
data exchange. Note that GreenDL-CA is not a new collision-
avoidance protocol. In the literature, many collision-aware
broadcast problems in wireless networks are modeled as 2-
hop coloring problems [52]–[55]. Such problems aim to bound
the degree of vertices to avoid serious transmission collisions
for the devices that share the same communication medium.
Therefore, following the above works, our problem GreenDL-
CA also limits the maximum degree of each device to a
specific parameter ∆ such that the required time slots in
the broad scheduling is bounded within ∆2 + 1, where the
parameter ∆ is a tunable parameter to limit the maximum
number of nearby devices within the transmission range of
each device. The base station can set a large ∆ when the
number of available transmission resources is sufficient.

To this end, we impose a new constraint (i.e., eq. (7)) to
limit the number of nearby devices within the transmission
range of each device.

xvp · (∆−
∑

e∈E(v):p≥τ(e)

1) ≥ 0, ∀v ∈ V,∀p ∈ P. (7)

Intuitively, setting a lower ∆ can mitigate the collisions be-
tween devices and shorten the completion time of each round,
since each device has at most ∆ neighbors for exchanging
parameters. In contrast, the greater ∆ is set up, the longer the
devices may wait for the completion of communications in
each round.

6For more detailed explanation of flow-based constraints, please refer to
Appendix D of the supplementary material.

D. Hardness Results

Then, we provide the rigorous proof of NP-hardness for
GreenDL and GreenDL-CA. At the very beginning, we intro-
duce an NP-hard problem, the Minimum Power Symmetric
Connectivity (MPSC) problem.

Definition 1. Given an undirected graph GM = {VM , EM},
where each possible link e ∈ EM is associated with a
minimum transmission power τM (e), the Minimum Power
Symmetric Connectivity (MPSC) Problem [51] asks for the as-
signment of transmission power γM (v) for each node v ∈ VM
to construct a tree TM spanning all nodes in VM such that:

1) For each link e in the tree TM , both its incident nodes
should be assigned with a power of no less than τM (e);

2) The total power consumption of the nodes in the network
(i.e.,

∑
v∈VM

γM (v)) is minimized.

The MPSC problem is proved to be NP-hard [51]. In the fol-
lowing, we show that GreenDL is NP-hard by reducing MPSC
to GreenDL. Remark that the NP-hard proof of GreenDL-CA
is omitted due to the similarity and the page limit.

Theorem 1. GreenDL is NP-hard.

Proof. We prove the theorem with a polynomial-time reduc-
tion from MPSC to GreenDL. For any given MPSC instance
IM with a graph GM = {VM , EM}, we construct a GreenDL
instance I with a graph G = {V,E}, a link cardinality ratio
ϕ, and a power set P as follows. First, we set ϕ = |VM |−1

|EM |
and P = {τM (eM )|∀eM ∈ EM} in I . Then, we construct a
device and add it to V of I for each node in VM . For any
link in EM , we create a link and add it to E to connect the
corresponding devices in V . Last, for each link e1 in EM
and its correspondingly created link e2 ∈ E, the minimum
transmission power level of e2 is set to that of e1 (i.e.,
τ(e2) = τM (e1)). It is obvious that the reduction can be done
in polynomial time. Moreover, the optimal solution of IM can
be transformed to the optimal solution of I , and vice versa,
since 1) ϕ = |VM |−1

|EM | = |V |−1
|E| and 2) the minimization of

power consumption makes the optimal solutions of IM and I
both become a tree. Therefore, the theorem follows.

IV. ALGORITHM DESIGN

In this section, we first introduce two naive approaches
as the baselines for GreenDL with illustrative examples in
Section IV-A. The design of CoTRAIN is detailed in Section
IV-B. Note that the examples for each phase in CoTRAIN are
presented in Appendix C. Then, the approximation ratio of
CoTRAIN is shown in Section IV-C. Lastly, the extension of
CoTRAIN (i.e., CoTRAIN-CA) is introduced in Section IV-D.

A. Two Naive Approaches for GreenDL

Two naive extensions from the well-known Kruskal’s algo-
rithm for the minimum-cost spanning tree (MST) problem can
be modified to solve GreenDL. They respectively follow the
idea behind Kruskal’s algorithm, termed KR1 and KR2. The
details of the Kruskal’s algorithm, KR1, and KR2 are concisely
introduced as follows. Due to the page limit, the pseudocodes
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of KR1 and KR2 are presented in Appendices E and F of the
supplementary material.

1) The Kruskal’s algorithm is a greedy-based method to
find a minimum-cost spanning tree (MST) T in a given edge-
weighted graph. It iteratively selects the edge with minimum
weight and adds this edge to T if doing so does not form a
cycle in T until a tree spanning all the nodes is constructed
[56].

2) KR1 is an extension of Kruskal’s algorithm for GreenDL.
KR1 has two phases. KR1’s first phase iteratively selects the
link e with the lowest τ(e) and adds it to the solution if doing
so forms no cycle in the beginning. KR1 turns into the second
phase once a tree connecting all devices is constructed. Similar
to the first phase, KR1’s second phase continues adding the
link with the lowest τ(e) iteratively to meet the link cardinality
ratio (i.e., a user-defined ratio of the requested link cardinality
to the total number of possible device pair). However, the
second phase does not avoid forming a cycle while it aims
to select adequate links.

3) KR2 is the other extension of Kruskal’s algorithm for
GreenDL. KR2 works similarly as KR1. The only difference
is that KR2 iteratively selects the link that increases the least
total power consumption.

However, KR1 and KR2 both neglect the interplay among the
three challenges described in Section I such that most links
selected by both methods are rarely in dense areas, and thus
may waste power to cover a few links.

B. Rationale to Design CoTRAIN and Methodology

To efficiently solve GreenDL, we design an approximation
algorithm named CoTRAIN to carefully address the above
challenges. Instead of selecting a single link with the lowest
minimum transmission power level for each time, CoTRAIN
takes a forward view to select multiple links that have the low-
est power consumption per link cardinality (i.e., niche link set).
In this way, CoTRAIN can avoid excessively increasing the
transmission power of devices in sparse areas and significantly
reduce the transmission power. It introduces niche indicator to
evaluate link sets and iteratively find the niche link set (or a
close one) to augment the links until the link cardinality ratio
is met, and then imposes a MST for the network connectivity.
Finally, it removes the redundant links to save more energy.
The pseudocode of CoTRAIN is presented in Algorithm 1.

Specifically, let Et be the unselected links in E after link
selection of the tth iteration and E0 = E, initially. Finding
the niche link set in the network {V,Et−1} at the tth iteration
is equal to solving the following integer programming (IP),
where the decision variables (xt, yt) in (8) are akin to the
decision variables (x, y) in GreenDL (1).

minimize
xt
vp,y

t
e∈{0,1},

∀v∈V,∀p∈P,∀e∈Et−1

∑
v∈V

∑
p∈P x

t
vp · p∑

e∈Et−1
yte

(8a)

subject to

yte ≤
∑

p∈P:p≥τ(e)

xtvp,∀e ∈ Et−1,∀v ∈ V (e), (8b)

Algorithm 1 CoTRAIN
Input: A given network G = (V,E), a set of power levels P , the

minimum transmission power level τ(e) for each link e ∈ E,
link cardinality ratio ϕ, and a loss percentage ε.

Output: The set of selected links E .

NL Selection

1: L ← ∅, E0 ← E, t← 1;
2: while |L| < (1− ε)ϕ|E| do . To constantly check the number

of selected links
3: X

t
, Y

t ← LP_Solver(V,Et−1,P) ; . To obtain the
optimal fractional solution (OFS) of LP (9)

4: ct ← 2dlog |Et−1|e − 1;
5: for each i ∈ [0, ct − 1] do
6: Cti ← {e ∈ Et−1| 0.5(i+1) < ȳte ≤ 0.5i}; . To partition

the OFS into the specified groups
7: Lt ← arg maxCti :0≤i≤ct−1 Λ(Cti ), tie breaking arbitrarily,

where Λ(Cti ) = |Cti | − 2i

ct+1
;

8: Et ← Et−1 \ Lt;
9: L ← L ∪ Lt;

10: t← t+ 1;

NC Provision

11: T ←MST (G); . To obtain minimum-cost spanning tree of G
12: E ← (E ∩ T ) ∪ L;

RL Deletion

13: Eex ← ∅; . The set of the examined link
14: while |E| > (1− ε)ϕ|E| do
15: e ← arg maxe′∈E\Eex

Φ(E) − Φ(E \ {e′}), tie breaking
arbitrarily;

16: Eex ← Eex ∪ {e};
17: if E \ {e} is connected then
18: E ← E \ {e};
19: return E ;

∑
e∈Et−1

yte ≥ 1. (8c)

However, the above IP is still non-trivial. To this end, Co-
TRAIN subtly 1) relaxes the integral restriction of decision
variables xtvp, y

t
e ∈ {0, 1} in (8) to the fractional restric-

tion of the decision variables xtvp, y
t
e ≥ 0 and 2) scales∑

e∈Et−1
yte ≥ 1 to

∑
e∈Et−1

yte = 1 to get a linear pro-
gramming (LP) as follows.

minimize
xt
vp,y

t
e≥0,

∀v∈V,∀p∈P,∀e∈Et−1

∑
v∈V

∑
p∈P

xtvp · p (9a)

subject to

yte ≤
∑

p∈P:p≥τ(e)

xtvp,∀e ∈ Et−1,∀v ∈ V (e), (9b)

∑
e∈Et−1

yte = 1. (9c)

In this way, the fractional optimal solution (xt, yt) can be
acquired by a polynomial-time LP solver (e.g., Gurobi [57]),
and CoTRAIN can find a near-optimal niche link set (i.e., close
to the niche link set) based on the clue given by (xt, yt).

To acquire the near-optimal niche link set, CoTRAIN con-
structs multiple candidate niche link sets in each iteration and
chooses the one with the largest niche indicator. Specifically,
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at the tth iteration, CoTRAIN constructs ct candidate niche
link sets, Ct0, Ct1, ..., Ctct−1, and the ith candidate is

Cti = {e ∈ Et−1| 0.5(i+1) < yte ≤ 0.5i}, (10)

where ct = 2dlog |Et−1|e − 1 and 0 ≤ i ≤ ct − 1. Then, the
niche indicator of each niche link set Cti is defined as

Λ(Cti ) = |Cti | −
2i

ct + 1
. (11)

Later we show that the niche link set and niche indicator are
the cornerstones of CoTRAIN to ensure the approximation
ratio.

CoTRAIN includes the following three phases: 1) Niche
Link Selection (NL Selection), 2) Network Connectivity Pro-
vision (NC Provision), and 3) Redundant Link Deletion (RL
Deletion). Particularly, NL Selection first iteratively constructs
multiple candidate niche link sets, chooses the best set among
them, and adds the links of the chosen set into the selected
links until the link cardinality ratio is satisfied. NC Provision
then imposes a MST to connect all devices to guarantee
network connectivity. Finally, RL Deletion eliminates redun-
dant links to reduce total power consumption. To achieve
the approximation ratio, it is important for NL Selection to
evaluate the constructed candidate niche link sets by niche
indicator to find the near-optimal niche link set.

1) Niche Link Selection (NL Selection): NL Selection iter-
atively finds the near-optimal niche link set and adds the links
of the set to the selected links until the link cardinality ratio
is satisfied. Recall that Et is the unselected link set in E after
link selection of the tth iteration and E0 = E, initially. For
the tth iteration, NL Selection obtains the optimal fractional
solution (xt, yt) of LP (9) with the network7 {V,Et−1} by
any existing LP solver (e.g., Gurobi [57]). Then, it constructs
ct candidate niche link sets according to eq. (10) and chooses
the set with the largest niche indicator (see eq. (11)) among the
ct candidate sets, where ct = 2dlog |Et−1|e−1. The candidate
niche link set chosen in the tth iteration can be written as

Lt = arg max
Cti :0≤i≤ct−1

Λ(Cti ). (12)

Afterward, NL Selection adds the links in Lt into the selected
links, and then employs the sub-network with {V,Et}, where
Et ← Et−1 \ Lt, for the next iteration (i.e., the (t + 1)th

iteration) to compute the optimal fractional solution of LP (9)
and Lt+1. NL Selection repeats link selection until the number
of selected links is at least (1− ε)ϕ|E|, where ε is a positive
tunable parameter to limit the loss percentage of requested
link cardinality. Now, the link set selected by NL Selection is
L =

⋃k
t=1 Lt, where k is the number of executed iterations.

2) Network Connectivity Provision (NC Provision): NC
Provision employs Kruskal’s algorithm to get a MST T of
the network G to ensure the network connectivity. To precisely
calculate the power consumption, each link e is associated with

7Note that when the number of unselected links is smaller than nine, i.e.,
|Et−1| < 9, NL Selection can compute the optimal niche link set since it
only has to examine at most 28 = 256 possibilities, which takes a small
constant time. Therefore, it suffices to deal with the cases where |Et−1| ≥ 9.

a new cost φ(e) = minp∈P:p≥τ(e) p for computing T . After
NC Provision, the selected link set becomes (E ∩ T ) ∪ L.

3) Redundant Link Deletion (RL Deletion): The final phase
eliminates redundant links so as to further decrease the power
consumption. Let E and Φ(E) denote the current selected
links (i.e., E ← (E ∩ T ) ∪ L) and its transmission power
consumption. Since each device in the network should have
an adequate transmission power level,

Φ(E) =
∑
v∈V

max
e∈E(v)∩E

φ(e), where φ(e) = min
p∈P:p≥τ(e)

p,

(13)

and E denotes the selected links. RL Deletion iteratively
removes the link e, the removal of which saves the most power
until |E| ≤ ϕ|E|, i.e.,

e = arg max
e∈E

Φ(E)− Φ(E \ {e}). (14)

However, to keep the network connectivity, RL Deletion does
not remove link e if removing e splits the induced topology.

C. Theoretical Analysis
We first analyze the time complexity of CoTRAIN.

Time Complexity 1. Let TLP denote the time complex-
ity of solving LP (9). The time complexity of CoTRAIN is
O(TLP |E|).

Proof. NL Selection in CoTRAIN performs at most |E| times
of TLP to cover links so the time complexity in NC Pro-
vision is O(TLP |E|). NC Provision in CoTRAIN performs
Kruskal’s algorithm to get a MST so its time complexity is
O(|E| log |V |). Lastly, RL Deletion checks redundant at most
|E| links for |E| links so its time complexity is O(|E|2).
Therefore, the time complexity of CoTRAIN is dominated by
NL Selection with time complexity of O(TLP |E|).

Remark that the LP (9) can be solved in polynomial time,
and the best known complexity of LP solver in the literature
is O(α2.37 log(α/β)), where α is the number of decision
variables and β is the bit-complexity [58]. Recall that the LP
(9) has |V | · |P| + |E| = O(|E|) decision variables at the
tth iteration (i.e., xtvp and yte) since |P| is usually a small
constant and |V | ≤ |E|. Thus, the complexity of solving the
LP (9) is O(|E|2.37 log |E|), and the overall time complexity
of CoTRAIN is O(|E|3.37 log |E|).

To prove that CoTRAIN guarantees an approximation ratio
(i.e., Theorem 2), we first claim Lemmas 1, 2, and 3 as follows.
Note that Lemma 2 holds if Lemma 1 holds as well. Then,
with Lemmas 2 and 3, Theorem 2 immediately follows. For
ease of reading, the proofs of Lemmas 1, 2, and 3 are provided
in Appendix G of the supplementary material.

Lemma 1. At the tth iteration of NL Selection, the cho-
sen near-optimal niche link set Lt has the power consump-
tion per link cardinality Φ(Lt)/|Lt| less than dlog |Et−1|e ·
Φ(L∗t )/|L∗t |, where L∗t denotes the optimal niche link set at
the tth iteration, i.e., the optimal solution of IP (8).

Lemma 2. NL Selection outputs a set of links L with
the power consumption Φ(L) < dlog |E|e(1 + ln 1

ε +
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1−ϕ
εϕ )Φ(OPT ) while ensuring |L| ≥ (1 − ε)ϕ|E|, where
OPT is the optimal solution of GreenDL and ε is a positive
tunable parameter to limit the loss percentage of requested
link cardinality.

Lemma 3. The power consumption of MST constructed by
NC Provision is Φ(T ) ≤ 2 · Φ(OPT ).

Theorem 2. CoTRAIN is a (O(log |E|(ln 1
ε + 1−ϕ

εϕ )), 1− ε)-
approximation algorithm, where ε is a positive tunable param-
eter to limit the loss percentage of requested link cardinality.

Proof. Lemmas 2 indicates the gap between the optimal solu-
tion and the intermediate solution generated by NL Selection.
Lemma 3 further shows the gap between the optimal solution
and the MST generated by NC Provision. Combining Lemmas
2 and 3, CoTRAIN outputs the link set E after NC Provision.
Thus, the power consumption of the solution E is

Φ(E) < (2 + dlog |E|e(1 + ln
1

ε
+

1− ϕ
εϕ

)) · Φ(OPT ). (15)

Finally, the theorem follows since link deletion by RL Deletion
does not increase the power consumption and it stops once
|E| ≤ ϕ|E|, i.e., |E| is still at least (1− ε)ϕ|E|.

D. CoTRAIN with Collision Awareness (CoTRAIN-CA)

We extend CoTRAIN to CoTRAIN-CA for GreenDL-CA as
follows. Recall that the first phase, NL Selection, iteratively
constructs the candidate niche link sets (i.e., the sets of links
for selection in each iteration) by solving the following linear
programming (LP) (9) and selects the one with the largest
niche indicator among the constructed candidate niche link
sets. To support GreenDL-CA, NL Selection is modified to
adopt LP (9) combined with eq. (16) to limit the number of
nearby devices within the transmission range of each device.

xtvp · (∆−
∑

e∈E(v):p≥τ(e)

1) ≥ 0, ∀v ∈ V,∀p ∈ P (16)

Subsequently, the second phase, NC Provision, is modified
to construct a MST without selecting any link that violates
eq. (7). It then adds such a tree to the solution to connect all
devices for the network connectivity. Finally, to further remedy
the collision issue, we modify the procedure in the third phase,
RL Deletion, where the rationale is to make it tend to prune
the links that connect the devices with more neighbors. More
specifically, the modified RL Deletion follows the original one
to iteratively remove a link until |E| ≤ ϕ|E|. The difference
is that RL Deletion gives the priority to the links whose
corresponding devices have the more neighbors, and then
selects the link that saves the most power among them. Note
that the results of Theorem 2 still holds for CoTRAIN-CA
due to the similarity. The pseudocode of CoTRAIN-CA is
presented in Algorithm 2.

V. PERFORMANCE EVALUATION

In this section, we first describe the experimental settings
(Section V-A) and then evaluate the power consumption of
CoTRAIN/CoTRAIN-CA, KR1/KR1-CA, and KR2/KR2-CA.
Lastly, we implement DL using the sets of links selected by

Algorithm 2 CoTRAIN-CA
Input: A given network G = (V,E), a set of power levels P , the

minimum transmission power level τ(e) for each link e ∈ E,
link cardinality ratio ϕ, and a loss percentage ε.

Output: The set of selected links E .

NL Selection

1: L ← ∅, E0 ← E, t← 1;
2: while |L| < (1− ε)ϕ|E| do . To constantly check the number

of selected links
3: X

t
, Y

t ← LP_Solver(V,Et−1,P) ; . To obtain the
optimal fractional solution (OFS) of LP (9) with eq. (16)

4: ct ← 2dlog |Et−1|e − 1;
5: for each i ∈ [0, ct − 1] do
6: Cti ← {e ∈ Et−1| 0.5(i+1) < yte ≤ 0.5i}; . To partition

the OFS into the specified groups
7: Lt ← arg maxCti :0≤i≤ct−1 Λ(Cti ), tie breaking arbitrarily,

where Λ(Cti ) = |Cti | − 2i

ct+1
;

8: Et ← Et−1 \ Lt;
9: L ← L ∪ Lt;

10: t← t+ 1;

NC Provision

11: G ← G \ {e ∈ E| τ(e) > ω(v), ∃v ∈ V (e)}, where ω(v) =
max{p ∈ P| ∆ ≥

∑
e′∈E(v):p≥τ(e′) 1};

12: T ←MST (G); . To obtain minimum-cost spanning tree of G
13: E ← (E ∩ T ) ∪ L;

RL Deletion

14: Eex ← ∅;
15: while |E| > (1− ε)ϕ|E| do
16: Vhi ← {v1 ∈ V | |E(v1) ∩ E \ Eex| = maxv2∈V |E(v2) ∩
E \ Eex|}; . To obtain the devices Vhi with the highest degree
in E

17: e ← arg maxe′∈∪v∈Vhi
δ(v)\Eex

Φ(E) − Φ(E \ {e′}), tie
breaking arbitrarily; . To obtain the link of Vhi that reduces the
most power consumption

18: Eex ← Eex ∪ {e};
19: if E \ {e} is connected then
20: E ← E \ {e};
21: return E ;

the six methods above. Overall, the extensive simulations and
implementation cover the following aspects:

1) Practices in Real-World Networks. We show that Co-
TRAIN and CoTRAIN-CA can be practically applicable to
the scenarios and save a great deal of power in real-world
networks by simulations (Section V-B).

2) Scalability in Synthetic Networks. With varying param-
eters δ, n, ρ, and ∆, we evaluate the performance of each
method and explore the findings of the characteristics of KR1
and KR2 (Section V-C).

3) Implementation of DL. We evaluate the decentralized
training of neural network models with the set of links selected
by different methods and further examine the impact posed by
the non-IID data partitions (Section V-D).

A. Experimental Settings

1) Network Magnitude:
• To take the real-world D2D transmission into account,

we evaluate three methods in two networks with 16 and 32
devices extracted from Santander City [16] and we refer to



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 9

the two networks as the small real-world network (with 16
devices) and the median real-world network (with 32 devices),
respectively.
• In order to examine the performance of three methods

in larger networks, we also expand the network magnitude
(i.e., number of devices) n and randomly deploy the devices
in a two-dimensional 50×50 m2 area (i.e., not extracted from
Santander City). We refer to the randomly-deployed networks
as synthetic networks.

2) Transmission Configurations: We assume that there are
only five available configurations of transmission power (i.e.,
|P| = 5) for D2D broadcast transmission. In the real-world
network dataset of Santander City [16], each device has a few
neighboring devices within the range of 30 m such that even
constructing a connected topology for the devices is difficult.
Therefore, in this paper, the minimum link range of D2D is set
to 30 m, and the corresponding minimum transmission power
is (0.1 × 50−4) × 304 × (1 + 0.5) ≈ 0.02 mW according to
the Distance-Based Path-Loss Power Control (DPPC) scheme
[59], where the receiver sensitivity, path-loss exponent, and
estimation margin are set to (0.1 × 50−4), 4, and 0.5, re-
spectively. Similarly, the maximum link range of D2D is set
to 100 m, and thus the corresponding minimum transmission
power is (0.1 × 50−4) × 1004 × (1 + 0.5) ≈ 2.4 mW. The
parameters for applying the DPPC scheme are referred to the
settings in [59].

3) Varying Parameters: We vary four variables to observe
the power consumption of the three methods, which are i) the
demand average degree δ (i.e., average number of links per
device), ii) the network magnitude n, iii) the device density ρ
(i.e., number of devices per unit of area), and iv) the maximum
degree constraint8 ∆, respectively.
• The small and median real-world networks: We alter the

values of δ ranging from 4 to 12 and set ∆ to be n and 2δ
for GreenDL and GreenDL-CA, respectively, since the other
two variables are predetermined (i.e., n = 16 or 32, and ρ is
determined by the random extraction from Santander City). To
see the optimality gap between three methods and the optimal
solutions, denoted by the OPT (i.e., the minimum power
consumption to satisfy the requirement of link cardinality), we
used Gurobi [57] to obtain the OPT. Each result of experiments
is averaged over 500 times, and the confidence level is 95%.
• The synthetic networks: We conduct extensive experi-

ments of three methods by altering one of the four variables
and fixing the others. The default values of four variables are
500 devices, 10 links/device, 0.005 device/m2, and 24 (or n if
the maximum degree constraint is not imposed), respectively.
Each result of experiments is averaged over 500 times and the
confidence level is 95%.

4) The DL Implementation Detail:
• We adopt the well-known dataset CIFAR10 [13] with

50, 000 images.
• The input images for training are preprocessed according

to [18]. TensorFlow and Keras are used to implement a convo-

8Recall that in Section III-C, ∆ represents the maximum number of nearby
devices within the transmission range of each device. Therefore, setting a
lower ∆ can mitigate the collisions among devices. In contrast, ∆ = n
indicates that the maximum degree is not restricted.

lutional neural network (CNN), which has two convolutional
layers (CL) and three fully connected layers (FL). Both two
CLs have 64 channels and each layer is followed by a 3 × 3
max pooling with a stride of two and normalization. The first
two FLs have 384 and 192 units (each of them with ReLu
activation followed by one dropout), and the last FL is the final
softmax output layer with 10 units. We adopted the optimizer
of mini-batch gradient descent [60]. The learning rate, learning
rate decay, number of local epochs, and local minibatch size
are set to 0.2, 0.99, 1, and 64, respectively.
• To implement IID and non-IID DL, we follow the method

of data partitions in [17] to present the degree of data
skewness. We control the skewness K ∈ [0, 1] by assigning
distinct fractions of non-IID data to each device. For example,
if K = 0.2, each device is allocated with a data partition, 20%
of which belongs to the same class and 80% of which is IID.
• We train the model described above with different topolo-

gies built by three methods and with different degrees of
K to examine the performance of CoTRAIN. We adopt two
networks with 16 and 32 devices to examine the performance,
both of which are extracted randomly in Santander City. Each
result of training is averaged over 20 times and the confidence
level is 90%. The training process of DL is implemented in
and emulated by an HP Z8G4 server with two Intel Xeon
Silver 4114 CPUs and two GPUs of GeForce RTX 3090.

B. Practices in Real-World Networks

The results of three methods and the OPT with and without
considering collision awareness are shown in Fig. 2. The gap
between the results of CoTRAIN and CoTRAIN-CA and the
OPT are bounded. Although the results of KR1/KR1-CA and
KR2/KR2-CA are close to those of CoTRAIN/CoTRAIN-CA
when the number of devices is 16, as shown in Figs. 2(a)
and 2(c), the broader difference emerges when the network
magnitude doubles and CoTRAIN/CoTRAIN-CA still closely
stick to the OPT, as depicted in Figs. 2(b) and 2(d). It is
because CoTRAIN/ CoTRAIN-CA take a forward view of
possible sets of links (i.e., niche indicator and niche link set)
while both KR1/KR1-CA and KR2/KR2-CA look for one best
possible link alone to cover. The running time of different
algorithms is shown in Table I. Gurobi takes more than 3.6
hours to derive the OPT solution for GreenDL as the number
of devices is 100, and its running time increases drastically
along with the increase of numbers of devices. In contrast,
the other three algorithms including CoTRAIN increases the
running time smoothly and only compute within 1 second as
the number of devices is 100. The result indicates that an
approximation solution is indispensable.

C. Scalability in Synthetic Networks

First, we investigate the results of three methods without
considering collision awareness. Overall, power consumption
increases when δ and n go up as shown in Fig. 3. KR1 selects
the links with lowest required power yet ignores discrete power
levels and symmetric wireless links. The selected links tends
to be sparse and waste much energy of devices to meet the
power level for connecting devices. KR2 selects the links
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TABLE I
RUNNING TIME OF DIFFERENT ALGORITHMS (SEC)

Algorithm CoTRAIN KR1 KR2 OPT
60 devices 0.0956 (1x) 0.0018 (0.02x) 0.0115 (0.12x) 73.611 (769.71x)
70 devices 0.1151 (1x) 0.0026 (0.02x) 0.0172 (0.15x) 175.765 (1527.62x)
80 devices 0.1474 (1x) 0.0035 (0.02x) 0.0249 (0.17x) 725.806 (4924.02x)
90 devices 0.2170 (1x) 0.0049 (0.02x) 0.0346 (0.16x) 3792.81 (17477.18x)
100 devices 0.3771 (1x) 0.0062 (0.02x) 0.0477 (0.13x) 13249.8 (35137.25x)

(a) Small real-world network (16 de-
vices)

(b) Median real-world network (32
devices)

(c) Small real-world network with
collision awareness

(d) Median real-world network with
collision awareness

Fig. 2. Effect of different degree and collision awareness on power consump-
tion.

with the lowest increase on overall power consumption. Some
devices may be forced to use the maximum power level to
cover links. In contrast, the links of each candidate niche link
set in CoTRAIN tend to be energy-saving. Then, by niche
indicator, CoTRAIN can choose the set with more links to
approximate the optimal solution.9 To observe the growth
of degree of each device in the established topology, Fig.
3(d) shows the distribution of device degree. KR1 tends to
select links uniformly in the network since it overlooks the
relation among links. More than 70% of devices have 5 ∼ 20
neighbors whereas those devices only account for 40% in KR2
and CoTRAIN. KR2 selects the links with lowest increase of
power consumption such that it has the most devices with
more than 30 selected links. When n is high, δ is low, or ρ
is high, KR2 outperforms KR1 since more links for selection
highlight the importance of relation among links as show in
Figs. 3(a), 3(b), and 3(c). However, none of them can always
generate desired solutions. By contrast, CoTRAIN can always
balance the two factors to reduce the power consumption.

Then, we examine the performance of three methods with
the maximum degree constraint. The results are shown in
Fig. 4. We can see that the performance of KR2-CA deviates
drastically due to the feature of KR2-CA (i.e., selecting links

9The optimal solution of GreenDL is obtained only for the small and median
networks since it is NP-hard and the running time is exponential to the network
size.

(a) Num. of devices vs power cons. (b) Degree vs power cons.

(c) Density vs power cons. (d) CDF of device degree

Fig. 3. Effect of different parameters in large synthesis networks.

(a) Max. deg. constraint vs power
cons.

(b) CDF of device degree with max.
deg. constraint

Fig. 4. Effect of maximum degree constraint in large synthesis networks.

increasing the least power consumption) and the maximum
degree constraint. The CDF of degree of the three methods in
Fig. 4(b) follows the similar growth rate of that in Fig. 3(d). On
the contrary, the results of both KR1-CA and CoTRAIN-CA
are less deviated. However, CoTRAIN-CA can attain much
lower power consumption since CoTRAIN-CA subtly over-
comes the three challenges even though the maximum degree
constraint is imposed. In conclusion, CoTRAIN/CoTRAIN-
CA exploit the advantages and evade the disadvantages of
the others. In spite of the imposition of maximum degree
constraint, CoTRAIN-CA can still outperform the others by
at least 20% of power consumption.

D. Implementation of DL

The results of different degrees of skewness, where K =
0%, 20%, 40%, 60%, and 80%, are shown in Figs. 5, 6, 7, 8,
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(a) 16 devices (b) 32 devices

Fig. 5. K = 0% (Uniform data distribution)

(a) 16 devices (b) 32 devices

Fig. 6. K = 20% (i.e., 20% of data belongs to one class)

(a) 16 devices (b) 32 devices

Fig. 7. K = 40% (i.e., 40% of data belongs to one class)

(a) 16 devices (b) 32 devices

Fig. 8. K = 60% (i.e., 60% of data belongs to one class)

(a) 16 devices (b) 32 devices

Fig. 9. K = 80% (i.e., 80% of data belongs to one class)

and 9, respectively. We omit the results with K = 100% (i.e.,
each device is allocated one class of training data) since the
model does not converge.10 Note that the deviation areas (i.e.,
the deviated accuracy due to mini-batch gradient descent) of
three methods are highly overlapping and rendered in gray.
It is obvious to see that the degree of skewness poses great
impact on the accuracy and convergence rate in the networks
with different magnitude for three methods. Remark that the
performance deviates severely when K gets higher. This is be-
cause the data skewness broadens the divergence of stochastic
gradient descent of each batch. Three methods achieve the
similar accuracy when using the almost identical numbers
of rounds, which results from the same link cardinalities.
However, as shown in Figs. 2, 3, and 4, CoTRAIN demands
far less power consumption than the other two in each round of
training. The cumulative power consumption of three methods
for the DL implementation, with K = 0%, n = 16 and
32 (extracted from Santander City), is presented in Table II.
Simply put, CoTRAIN conserves more than 20% of power
consumption for transmission compared to the other two
when the training process converges (i.e., achieving converged
accuracy of 78%).

In addition, to show that the degree bound constraint can
efficiently reduce the collisions, we conduct the following
experiment. Assume that the model size is 4 MB, the number
of available resource blocks is 1, and the bandwidth is 180
KHz. We set the transmission power according to the Distance-
Based Path-Loss Power Control (DPPC) scheme [59] to ensure
that the SINR within the desired link range is at least 10 dB.
Thus, the transmission rate is 180 × 1000 × log2(1 + 10) =
621000 bps = 0.621 mpbs by the Shannon capacity. Therefore,
each device’s transmission time in a training round is about
4× 8/0.621 ≈ 51.5 seconds. The results of transmission time
are summarized in Table III. CoTRAIN-CA takes less time
than CoTRAIN for all settings of δ. It is because CoTRAIN-
CA sets ∆ to 2δ to limit the maximum number of 2-hop
neighbors of a device such that more devices can broadcast at
the same time with the power level properly allocated.

In summary, we empirically show that CoTRAIN and
CoTRAIN-CA are effective in conserving power consumption
in the practical DL implementation without compromising
accuracy.

VI. CONCLUSIONS AND FUTURE WORKS

This paper studies a new optimization problem, GreenDL, to
explore the trade-off between transmission power consumption
and training performance in depth. In addition, GreenDL is
extended to be GreenDL-CA so as to mitigate the issue of
collision and interference by means of limiting the maximum
degree of each device. We rigorously prove the NP-hardness
of GreenDL and GreenDL-CA and explore three new chal-
lenges derived from both, which are discrete power levels,
symmetric wireless links, and density-aware power selection.
For GreenDL, we propose a novel algorithm CoTRAIN to
subtly take a forward view to selects links sets by exploiting

10The approach to mitigating the influence of non-IID data is beyond the
scope of this paper. Please refer to [17], [27] for more details.
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TABLE II
TRANSMISSION POWER CONSUMPTION IN THE SMALL AND MEDIAN REAL-WORLD NETWORKS (MW)

Accuracy 69% 72% 75% 78%

CoTRAIN-16 32.89 (1x) 48.56 (1x) 81.45 (1x) 170.73 (1x)
KR1-16 36.05 (1.10x) 57.86 (1.19x) 96.14 (1.18x) 214.54(1.26x)
KR2-16 40.70 (1.24x) 61.54 (1.27x) 113.16 (1.39x) 234.27 (1.37x)

CoTRAIN-32 50.79 (1x) 79.01 (1x) 130.50 (1x) 279.34 (1x)
KR1-32 64.21 (1.26x) 96.74 (1.22x) 162.66 (1.25x) 336.45 (1.20x)
KR2-32 67.76 (1.33x) 108.60 (1.37x) 178.22 (1.37x) 386.15 (1.38x)

TABLE III
TOTAL TRANSMISSION TIME WITH 16 DEVICES (MIN)

Accuracy 65% 68% 72% 74%

CoTRAIN-δ = 4 909.5(1x) 1955.0(1x) 4139.5(1x) -
CoTRAIN-CA-δ = 4 493.9(0.5x) 731.9(0.4x) 2546.6(0.6x) -

CoTRAIN-δ = 5 688.5(1x) 1122.0(1x) 2524.5(1x) -
CoTRAIN-CA-δ = 5 464.1(0.8x) 714.0(0.7x) 1666.0(0.7x) -

CoTRAIN-δ = 6 724.2(1x) 979.2(1x) 2560.2(1x) 3723.0(1x)
CoTRAIN-CA-δ = 6 596.7(0.8x) 826.2(0.8x) 1698.3(0.7x) 2968.2(0.8x)

CoTRAIN-δ = 7 856.8(1x) 1082.9(1x) 1749.3(1x) 2499.0(1x)
CoTRAIN-CA-δ = 7 569.5(0.7x) 850.0(0.8x) 1419.5(0.8x) 1895.5(0.8x)

CoTRAIN-δ = 8 868.7(1x) 1225.7(1x) 2463.3(1x) 4046.0(1x)
CoTRAIN-CA-δ = 8 617.1(0.7x) 813.5(0.7x) 1393.2(0.6x) 2094.4(0.5x)

insightful niche indicator to assess link sets. For GreenDL-CA,
we propose CoTRAIN-CA, which reserves the advantages of
CoTRAIN in spite of the constraint of the maximum degree
of each device. We show that both CoTRAIN and CoTRAIN-
CA achieve a logarithmic approximation ratio and polynomial
time complexity. On the implementation side, we evaluate
the performance of CoTRAIN and CoTRAIN-CA threefold
compared to two naive Kruskal’s-algorithm-based approaches,
KR1 and KR2. The results show that both CoTRAIN and
CoTRAIN-CA outperform the others by at least 20% with
no compromise of performance in practical DL.

The main contributions of this paper focus on exploring the
feasibility of the energy-efficient decentralized learning based
on the construction of topology for smart devices via D2D
communications. To the best of our knowledge, this potential
and interesting topic has not been explored in depth before.
To explore the intrinsic feasibility, it is nature to study a
relatively simplified formulation, that is, exploiting a large
number of links in communication topology leads to better
convergence rate in average. However, a larger number of links
does not always lead to a smaller training time in realistic
scenarios. The first reason is that selecting more links requires
the devices to set a higher transmission power level, and thus
it may cause more conflicts among the devices and prolong
the communication time in each training round. The second
reason is that the spectral gap and the hitting time also affect
the number of training rounds [28], [61]. Therefore, it will
be an interesting subject to explore a more complicated trade-
off between the energy cost and training time from multiple
perspectives at the same time.
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