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Abstract—Decentralized learning (DL) allows IoT devices to
exchange local model updates with only their neighboring devices
instead of sending their model updates to a central server for
aggregation. However, current DL frameworks cannot support
the emerging Social IoT (SIoT) paradigm since SIoT devices
exchange model updates with only social neighbors based on spe-
cific social relations (e.g., ownership and parental relationships).
Conversely, sharing model updates with non-social neighbors can
improve training performance but may violate social relations.
Differential privacy (DP) is thus engaged with DL to ensure data
security, while excessive devices engaging DP may downgrade the
training performance. However, most research neglects the effect
of neighbor selection for each device based on social networks,
physical networks, and DP. Therefore, in this paper, we explore
the non-trivial relation among the above factors to present a
DL framework, DeepPrivacy, and prove its convergence rate and
DP. Then, we formulate a novel optimization problem, CoTOPO,
to find an efficient communication topology1 for model updates
exchange among devices in DL, and propose an algorithm,
AutoTag, for CoTOPO. Last, experiment results manifest that
DeepPrivacy and AutoTag combined outperform the state of the
art in terms of convergence rate and physical training time
significantly on CIFAR10 and FMNIST.

Index Terms—Social Internet-of-Things, Decentralized Learn-
ing, Communication Topology, Partially Differential Privacy

I. INTRODUCTION

Recently, Social Internet of Things (SIoT) with Artificial
Intelligence (AI) on chips is a promising network paradigm,
where a set of SIoT devices monitor the environment and
collect the data (e.g., photos, voices, positions, signal), and
interact and establish relationship with each other to tackle a
specific task [1]. The SIoT devices can build parental object
relation and ownership object relation if they have the same
manufacturers and owners, respectively [1], [2]. However, due
to privacy issues, collecting and uploading private data from
SIoT devices to the central server with intensive computing
power for training are impracticable. Federated Learning (FL)
is thus designed to deal with the issue [3], where each device
processes its private data locally and uploads only the param-
eter updates to a central server for aggregation. Nevertheless,
the communication bottleneck arises when FL is adopted. The
central server suffers from receiving the surge of parameter
updates with limited bandwidth [4] and prolongs the training.

To overcome the communication bottleneck, decentralized
learning (DL) is proposed, where each participant (i.e., SIoT
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connectivity among participants. The logical connectivity can be established
according to specific rules. Two devices are neighbors iff there exists a link
between them and they will exchange model updates during DL process. FL
does not need communication topologies since each participant uploads model
updates onto the parameter server and suffers from communication bottlenecks.

device) execute on-device training but exchange parameter
updates with its neighbors according to a given communication
topology.1 In this sense, each device acts as both a training unit
and a parameter aggregator at the same time, and the role of
the central parameter server in FL is no longer needed [5].
The SIoT platforms can take an overview of social network
of devices [6], [7] so they are suitable to arrange the com-
munication topologies for devices. For example, iSapiens is
an SIoT-enabled platform featuring relationship and trustwor-
thiness managements among devices. The features facilitate
the assessment and management of social relations in the
SIoT paradigm, where the relations are typically established
autonomously according to prespecified social conditions [6].
Associated to iSapiens, devices and their social profiles are
registered in the platform. However, most research focuses on
data compression [5] but ignores the potential communication
time caused by physical networks. Then, a crucial bottleneck
arises in synchronous procedures of DL and prolongs training
time if the exploited links have long paths between devices
in the physical networks [8]. The fast-growing process power
and the slow-developing communication technology exacerbate
the issue. For instance, the process power of Nvidia GPUs has
increased by 30x in the last 10 years while the network speed
has only increased by 20x (4G to 5G) in the last 10 years [8].

Executing DL with communication topologies composed of
only social links between devices (e.g., ownership or parental
relations) in a sparse social network may limit the convergence
rate and prolong the training procedure [9]. In contrast, ex-
ploiting extra non-social links (i.e., exchange parameters with
strangers) can speed up the training but may put user data
at risk since user data may be reproduced unknowingly [10].
Fortunately, differential privacy (DP) engaged with devices to
add noises in the model updates for exchange can mitigate
the security issues [10], [11]. Thus, a non-social link can be
exploited if its two endpoint devices are both DP devices
(i.e., devices engaging DP). Conversely, exploiting DP devices
excessively may degrade the convergence rate [10]–[12]. How-
ever, selecting a reasonable number of DP devices to exploit
additional non-social links to accelerate training while retaining
the side effect of employing DP has not been studied.

To verify the above two issues, we conduct two motivat-
ing experiments regarding SIoT-based DL as follows. The
structure of adopted neural network for testing comprises 2
convolutional layers (CL) followed by 3 fully connected layers
(FCL) to learn a classification task for classifying 10 objects
in CIFAR10 [13] (see Section VI for more the implementa-
tion details) and the synchronous updating rules follow the
configuration in [14]. To delve into the impacts posed by the
added noises and correspondingly constructed communication
topologies, we extracted random 16 devices with physical and



TABLE I
TRAINING TIME IN DIFFERENT PHYSICAL NETWORK (16 DEVICES)

Target Accuracy 65% 68% 71% 73%

Number of Rounds 69 101 202 580
Computation Time (min) 131.1 191.4 383.2 1101.3

Communication Time in Net1 (min) 43.3 63.4 126.7 363.9
Communication Time in Net2 (min) 10.8 15.8 31.7 90.8
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Fig. 1. (a) Effect of number of DP devices ranging [0, 16] on accuracy and (b)
effect of hitting time ranging [28, 121] on accuracy in a 16-device network.

social links (ownership object relations) among them from
Santander (a city in Spain) [15] (see Section VI for more details
regarding the dataset Santander). We assume that the devices
are equipped with the same computing capabilities (i.e., the
same amount of time to finish locally one-round training in
DL), and the size of the neural network for exchange among
devices is approximately 4MB.2 First, the effects of different
physical networks on communication time are shown in Table
I. The two physical networks extracted from Santander, Net1
and Net2, have the same number of devices (i.e., 16) and take
the identical social network structures as the communication
topology. Still, they have different communication bottlenecks
of 37.6 and 9.4 sec, respectively, derived from different LTE-
M releases [19].3 The results show that the training time in
different physical networks can be deeply influenced (i.e.,
363.9 − 90.8 ≈ 273 min as the target accuracy is 73%) by
the communication bottleneck. Likewise, Fig. 1(a) shows the
performance achieved by adopting different number of DP de-
vices based on the same social network as the communication
topology. Intuitively, the more DP devices are adopted, the
more links can be included in the communication topology.
The convergence rate with only social links is much worse
than that with extra non-social links, but that with more than
six DP devices will decrease, implying that more noises may
prolong the process. Thus, the physical training time (i.e., the
time required to get a target accuracy) for DL depends on not
only communication topologies and physical networks but the
number of DP devices. However, the subtle relation among the
physical networks, social networks, and DP and their effects
on convergence rate have not been explored jointly to build a
good communication topology with non-social and social links
to reduce the physical training time.

Optimizing the physical training time by selecting a suitable

2Generally, the SIoT devices are equipped with limited computing power
so the structure of neural network for training in the SIoT devices should
be relatively lightweight, such as MobileNet [16], and SqeezeNet [17]. Such
lightweight models should not be compressed or quantized, or the performance
(e.g., the final accuracy or loss) will be drastically downgraded [18].

3Note that two devices with a social link may use different bandwidth for
communication (e.g., Cat-M1 and Cat-M2) in the physical network, leading to
the straggler problem in exchanging model updates. Thus, such low-data-rate
links are undesired in the communication topology.

set of DP devices and a set of social and non-social links to
build a communication topology for DL has new challenges:
1) Trade-off between global and local iterates. Global iterate is
the number of rounds to achieve converged accuracy for a given
task learned in decentralized fashion, and local iterate is the
time elapsed for devices to finish parameter exchange and local
gradient descent in a round. Intuitively, exploiting more links in
the communication topology can increase the connectivity and
help reduce the global iterate. However, it may make devices
more distant to their neighbors and cause higher local iterate,
which may prolong physical training time. The constraint of the
social relations among devices further exacerbates the issue. 2)
Uncertain global iterate. A smaller global iterate helps reduce
the physical training time. Nevertheless, adding more links
does not always imply a smaller global iterate, and it is difficult
to explicitly define global iterate [20]. Fortunately, by [9], we
can infer that the global iterate of a given communication
topology is asymptotically proportional to the hitting time.4
(see Definition 6), which highly depends on topology structure.
The effect of hitting time on convergence (with no DP noise)
is shown in Fig. 1(b). Clearly, a smaller global iterate comes
from a lower hitting time and their relation is almost linear.
3) Varying relation between global iterate and DP devices.
Exploiting extra non-social links achieves lower global iterate
at first since the sparsity of communication topology is re-
duced. However, it may come at the expense of more rounds to
achieve the required accuracy since the noises of DP devices
increases accordingly. Thereby, besides the hitting time, the
ratio of DP devices (i.e., ratio of devices engaging DP in the
network) also holds sway on global iterate. In summary, given
a social network and a physical network, it is challenging to
judge if physical training time can be further reduced by adding
more DP devices or explicitly using available links (i.e., social
links or non-social links between existing DP devices). It is
because both manners subtly influence the growth and decline
of physical training time.

To address the above challenges jointly, we first propose
the Decentralized Optimization Framework with Partially Dif-
ferential Privacy (DeepPrivacy), which is run in the SIoT
platforms and arranges a subset of devices to engage DP so
as to exploit extra non-social links for training acceleration.
To fully utilize DeepPrivacy, we present a new optimization
problem named Construction of Time-Efficient Communica-
tion Topology in Social Networks for DeepPrivacy (CoTOPO)
as follows. With the given parameters: 1) a social network
and 2) a physical network with node and link weights (i.e.,
communication and computation time5), CoTOPO asks for a
set of links to construct a communication topology that yields
the minimum physical training time. An Adaptive Dual-Factor
Topology Construction Algorithm (AutoTag) is then designed
to address the above three challenges to accelerate training.

The novelty and contributions are summarized as follows.

4Hitting time can be informally regarded as the expected number of rounds
needed to propagate a message from a device v1 to another device v2 in the
network. Note that the hitting time from v1 to v2 can be different to that from
v2 to v1. The detailed definition is presented in Definition 6 with Example 2.

5Note that the computation time for training can be predicted by considering
required numbers of flops for traversing training models and the available flops
of training devices [21]. The communication time can also be predicted since
LTE-M offers expected data rates [22].



• To the best of our knowledge, this paper makes the first
attempt to explore the relation among the social and physical
networks and DP in DL for the SIoT devices and proposes an
algorithm, AutoTag, from the perspective of SIoT platforms
to build training-time-efficient communication topologies.

• We present a new DL framework, DeepPrivacy, to exploit the
communication topologies with non-social and social links
constructed by AutoTag and rigorously show the convergence
rate of DeepPrivacy for non-convex loss functions.

• We evaluate the performance of DeepPrivacy with two well-
known datasets, CIFAR10 [13] and FMNIST [23]. The
results show that DeepPrivacy outperforms the state-of-the-
art by at least 20% of physical training time.

II. RELATED WORK

A. Communication-Efficient Federated Learning (FL)

FL is devised to train the global model locally via multiple
user devices with their data to avoid direct data access [3].
To derive the global model for the next-round learning, FL
requires a parameter server to coordinate and aggregate the
local model updates from user devices. Konečnỳ et al. present
a method to optimize the transmission efficiency between the
central server and devices by lightening transmitted data sizes
[24]. Wang et al. analyze the convergence rate via distributed
gradient descent to achieve the best trade-off between the
local training epoch and global aggregation [25]. Nishio et
al. maximize the number of selected devices for a round in
FL [26]. However, FL still struggles over the communication
bottleneck when the local model updates from the user devices
are sent to the parameter server for aggregation.

B. Communication-Efficient Decentralized Learning (DL)

DL is first innovated by Tsitsiklis et al. [27], and it is
also called gossip algorithm. Different from FL, DL does not
require a parameter server to aggregate the local model updates
from user devices. Li et al. develop a pipelined framework
which allows two consecutive computing iterations to overlap
on the timeline and mask the faster of the computation and
communication to reduce the training time [28]. Koloskova et
al. propose CHOCO-SGD that quantizes the model updates
(e.g., from 32-bit float point to 8-bit integer) and show that
CHOCO-SGD achieves linear speedup of convergence rate
in the number of training devices compared to SGD on a
single node for high compression ratios on general non-convex
functions, and non-IID training data [5]. However, none of
them considers the construction of communication topologies
and the interplay between the social and physical networks.

C. FL and DL with Differential Privacy (DP)

For FL, DP is adopted to add noises into model updates
on the device side before aggregation [29]. Arachchige et al.
propose a promising mechanism where convolutional and fully
connected layers are trained on devices and a central server,
respectively, and DP is employed to add noises into feature
before intermediate data leave devices [30]. For DL, Li et
al. add noises into parameters before exchanging them with
their neighbors [12]. Zhang et al. combine the techniques of
sparsification with DP to guarantee the data privacy and reduce

the model size for exchange in DL [31]. Nevertheless, none of
them considers social networks and partially DP mechanism.

III. PRELIMINARIES

A. Decentralized Learning (DL)

We consider a network including a set of SIoT devices
V , which are unwilling to share information with unknown
devices. A training task is launched in DL fashion of the form

f(x) :=
1

|V |
∑
i∈V

fi(x), ∀x ∈ X ⊆ Rd (1)

where f, fi : X → R are global and local functions, respec-
tively. Each device i ∈ V has its local function fi and the
local function is usually approximated by stochastic gradient
descent (SGD) with device i’s local data Di, yielding

fi(x) := Eξt∈Di
Fi(x, ξt), (2)

where Fi : Rd × ξt → R denotes the local function ap-
proximated by a fraction of data ξt randomly drawn from
Di at round t. Here we assume Fi(·, ·) is non-convex, which
is more practical in the machine learning context [5]. Each
device synchronously updates the local parameter as follows.
The devices execute the optimization techniques (e.g., SGD)
with local data iteratively to obtain local parameters in each
round. To acquire more accurate and precise model parameters,
the devices necessitate exchanging local parameters with its
neighboring devices. The prespecified communication topology
Gc = (V,Ec) determines the connections among the devices
so the local parameters are updated synchronously as follows.

xt+1
i =

∑
j∈V

aij(x
t
j + ηtg

t
j), (3)

where ηt and gtj are the learning rate at round t and gradient of
device j at round t, respectively, and aij denotes the entry at the
ith row and the jth column of communication matrix A(Gc)
(see Definition 1). Note that each device will receive at least
one copy and at most |V |−1 copies of local parameters from its
neighbors in Gc. The number of received copies depends on the
prespecified neighbors. Generally speaking, the less deviated
number of the copies each device receives in each round (i.e.,
the communication topology is less irregular), the better the
training results can be. To aggregate the multiple copies, the
devices follow the instructions in the communication matrix
introduced in Definition 1 to aggregate the copies.

Definition 1 (Lazy-Metropolis-based Communication Matrix
[9]). Given a set of devices V , the entries aij of the com-
munication matrix A(Gc) ∈ [0, 1]|V |×|V | of communication
topology Gc = {V,Ec} are defined as

aij =


1−

∑
k∈V \{i} aik, if i = j,

1
2 max{degc(i),degc(j)} , else if (i, j) ∈ Ec,
0, otherwise,

(4)

where degc(i) denotes the degree of device i in Gc. By (4),
the sum over any row or column in A(Gc) is equal to 1 and
A(Gc) is symmetric so A(Gc) is a doubly stochastic matrix.



The goal of each device is to find the optimal model
parameters x∗ ∈ Rd such that

f(x∗) = min
x∈Rd

1

|V |
∑
i∈V

fi(x). (5)

There are two stopping criteria. One is to terminate the training
process when the prespecified target round, say, 500, is met.
The other is to check the performance by averaging over the
results of each device (e.g., the averaged accuracy for an object
classification task) and decides whether to go through another
round of training again to get better performance.

B. Differential Privacy (DP)

Definition 2 (Differential Privacy [11]). A randomized algo-
rithm A : D → R with domain D and range R is said to
be (ε, δ)-differentially private if for any two adjacent datasets
D,D′ ∈ D that differ on a single data point and for any subset
of outputs S ⊆ R, the following inequality holds

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ, (6)

where ε > 0 and δ ∈ (0, 1) are the privacy budgets.

Simply put, ε and δ should be kept low if the privacy level
is highly demanded. However, higher privacy level sacrifices
the accuracy of optimization problem (i.e., eq. (1)). Therefore,
we need a factor, sensitivity (see Definition 3), to determine
how much noise should be generated to perturb the process of
optimization and guarantee the privacy level at the same time.

Definition 3 (l2-Sensitivity [32]). Following Definition 2, The
sensitivity of a randomized algorithm A at round t ≥ 0
(denoted by At) is defined as follows

∆t = sup
D,D′∈D

‖At(D)− At(D′)‖2. (7)

l2-Sensitivity is important to determine how much noise
should be added to guarantee a given privacy level at round
t. If ∆t is higher, we will prefer to add more noises since it
could be easy to distinguish between D and D′.

IV. THE DL FRAMEWORK & OPTIMIZATION PROBLEM

A. The Design of DeepPrivacy for DL

The pseudocode of DeepPrivacy is presented in Algorithm
1. DeepPrivacy requires the initial model parameters x0

i for
each device i, time-varying learning rate ηt, privacy budget ε,
convergence index ε, target global round T , and checkpoint
round H (see Section VI for more details). Also, DeepPrivacy
requires a communication topology Gc which includes 1) the
set of devices V and 2) a set of Ec to specify the neigh-
bors for each device in V to exchange local model updates.
Note that different communication topologies lead to different
convergence rates and thus a novel problem is introduced
to optimize the communication topology for DeepPrivacy in
Section IV-B. For ease of reading, we go through the statements
in DeepPrivacy as shown in Algorithm 1. For each device i,
a fraction of training data ξti is randomly drawn from local
dataset Di (line 4), and the gradient gti is computed (line 5).
Then, if a device is appointed to adopt DP mechanism (line 6),
it generates noises wti (line 9) based on the sensitivity (lines 7

Algorithm 1 DeepPrivacy
Input: The initial model parameters x0

i for each device i ∈ V ,
communication topology Gc = {V,Ec}, communication
matrix A(Gc), time-varying learning rate ηt, convergence
index ε, the target round T , the checkpoint round H ,
privacy budget ε, δ.

1: t← 0, Conv ← false;
2: while (!Conv and t < T ) do
3: for all device i ∈ V do in parallel
4: Sample ξti from Di;
5: Compute gradient gti ← ∇Fi(xti, ξti);
6: if DP mechanism is on then
7: Compute sensitivity ∆t ← 2ηt‖gti‖;
8: φt ←

∆t

√
(2 log 1.25)/δ

ε ;
9: Generates noises wti ← N (0, (φt)

2);
10: yti ← xti + ηtg

t
i + wti ;

11: else
12: yti ← xti + ηtg

t
i;

13: Send yti and receive ytj to/from device j if (i, j) ∈ Ec;
14: xt+1

i ←
∑
j∈V aijy

t
j ;

15: end for
16: if t mod H == 0 then
17: Average performance Rt = 1

|V |
∑
i∈V R

t
i;

18: if t 6= 0 and |Rt −Rt−H | ≤ ε then
19: Conv ← true;
20: end if
21: end if
22: t← t+ 1;
23: end while

and 8) to perturb its local gradient, and caches the perturbed
parameters (line 10). The devices cache the parameters without
perturbing (line 12) if not appointed to adopt DP mechanism
(line 11). The devices exchange parameters with the neighbors
(line 13) and update local parameters by aggregating local
and neighbors’ parameters (lines 14). The performance is
periodically examined (i.e., once per H rounds) (line 16) by
averaging over all the results6 from each device Rti at the tth
round (line 17). If it is converged (line 18) or the target round
has been achieved (line 2), the training process finishes. We
first prove the DP of DeepPrivacy in Proposition 1 and defer
the proof to convergence of DeepPrivacy until Section V-A.

Proposition 1. For each pair of devices that do not have social
link in Es but have to exchange parameters with each other
based on Ec, DeepPrivacy achieves (ε, δ)-differential privacy.

Due to the page limit, Proposition 1’s proof is shown in [33].

B. Problem Formulation of CoTOPO
For user privacy, the communication topology Gc should

contain only the social links included in the given social
network, denoted as Gs = (V,Es), while the convergence
rate is usually compromised crucially due to the sparsity and
irregularity of social network. Thus, DeepPrivacy is innovated
to exploit non-social links to accelerate the convergence of
DL. However, user data may be unknowingly reproduced [10].

6The metrics may be accuracy or loss, depending on the target task.
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Fig. 2. (a) Solid and dashed lines represent social and non-social links in
the social network Gs, respectively. The numbers next to each link and node
denote the communication time between two devices and computation time of
device in physical network Gp, respectively. (b) An example of communication
topology Gc. The blue and red links represent the social and non-social links
selected in Gc, respectively, and the gray nodes denote the DP devices.

Specifically, the device for DL can receive the shared model
updates straight from neighboring unknown devices when the
corresponding non-social links between it and the other devices
(i.e., non-existent links in Es) are exploited to exchange model
updates and accelerate the training. The receiver may further
infer some sensitive information of unknown devices based on
the received share model updates [10].

Then, it is necessary for devices to adopt DP mechanism
if non-social links are exploited in the communication topol-
ogy for DL. Exploiting non-social links with DP is usually
beneficial to sparse and irregular social networks but more
rounds to a specific accuracy may derive in return — the
neighbors of DP devices would also suffer lower accuracy
since a share of model updates comes with noises. Moreover,
exploiting a link between two distant devices (i.e., taking long
time to exchange model updates) in the physical network,7
denoted by Gp = (V,Ep), may dominate the one-round
communication time for exchange in physical training time.
Thus, DeepPrivacy requires a suitable communication topology
balancing global iterate (i.e., the number of rounds to achieve
a specific accuracy) and local iterate (i.e., the time required
for each round) for computing and exchanging local model
updates among devices to reduce physical training time. The
link in Gc requiring the most time in Gp will be the physical
bottleneck to prolong overall training procedure, so we have
Definition 4 as follows.

Definition 4 (Local Iterate). Let ri and dij denote the com-
putation time of device i ∈ V and the communication time
between devices i, j ∈ V in one round. The local iterate is
defined as the maximum communication and computation time
of the links Ec in communication topology Gc, i.e.,

L(Gc) = max
(i,j)∈Ec

(dij + max{ri, rj}). (8)

Example 1. This example shows how to count local iterate.
The social network Gs and physical network Gp with commu-
nication time dij and computation time ri are shown in Fig.
2(a). Take the topology in Fig. 2(b) for example. By eq. (8),
link DE dominates the local iterate, which is 45+7 = 52. �

However, explicitly defining global iterate, which we denote
by G(Gc), is non-trivial [20] and will be discussed in the next
section. The problem CoTOPO is then defined as follows.

7Notice that the physical links between devices may be heavy-weighted
since the social relations between devices are not geographically restricted.

TABLE II
ENTRIES mij IN HITTING TIME MATRIXM(Gc)

mij j = A j = B j = C j = D j = E j = F

i = A 0 15 16.5 10.5 25.3 15.9
i = B 11.3 0 11.3 13.5 23.6 23.6
i = C 16.5 15 0 10.5 15.9 25.3
i = D 13 19.7 13 0 18.8 18.8
i = E 18.4 20.5 9 9.5 0 26
i = F 9 20.5 18.4 9.5 26 0

Definition 5 (CoTOPO). Given a connected social network
Gs = (V,Es) and a connected weighted physical network
Gp = (V,Ep), Construction of Time-Efficient Communication
Topology in Social Networks for DeepPrivacy (CoTOPO) asks
for a set of links Ec ⊆ (V ×V ) to construct a communication
topology Gc = (V,Ec) for DeepPrivacy according to Defini-
tions 1 and 4, and minimize physical training time, i.e.,

minimize G(Gc) · L(Gc). (9)

V. ALGORITHM DESIGN — AUTOTAG

We first derive the critical factors dominating the global
iterate to obtain a regression function to predict the non-
trivial global iterate. Then, we design an algorithm to construct
multiple candidates of communication topologies and then
choose the best candidate via the regression function.

A. Predict the Global Iterate

To overcome the uncertain global iterate, we start by explor-
ing the relations among global iterate, communication topol-
ogy Gc, and communication matrix A(Gc). Let λi(A(Gc))
denote the ith largest eigenvalue of matrix A(Gc). We define
ρ = max{|λ2(A(Gc))|, |λ|V |(A(Gc))|} and the spectral gap
δ(Gc) = (1−ρ) ∈ (0, 1] [9]. With [9], we obtain the following
relation between global iterate and spectral gap.

Proposition 2. In [9], Proposition 4 shows the relation between
global iterate and the reciprocal of spectral gap is G(Gc) ∝

1
δ(Gc) , and Proposition 5 further bounds the reciprocal of
spectral gap 1

δ(Gc) by O(H(Gc)), where H(Gc) is the hitting
time of Gc (see Definition 6) with the matrix established by
eq. (4). Therefore, we yield the following induction

G(Gc) ∝
1

δ(Gc)
= O(H(Gc)). (10)

Following Proposition 2, we need to consider the hitting time
H(Gc) (see Definition 6) to predict the global iterate.

Definition 6 (Hitting Time [9]). Given a communication matrix
A(Gc) calculated by (4), the entries of relevant hitting time
matrix M(Gc) ∈ R|V |×|V | are defined as

mij =

{
0, if i = j,

1 +
∑
k∈V,k 6=j aik ·mkj , otherwise,

(11)

where mij is the hitting time (i.e., expected step) from device
i to j. The hitting time of communication topology Gc is the
largest entry in M(Gc), i.e., H(Gc) = maxi,j∈V mij .

Remark that the hitting time between i and j is bidirectional
and the rationale behind H(Gc) is detailed in Example 2.
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Fig. 3. (a) and (b) show the relations between the degree deviation and hitting
time and the reciprocal of spectral gap, respectively.

Example 2. This example shows the calculation of hitting time
with the network in Fig. 2(a), where matrix M is 6× 6. Take
the topology in Fig. 2(b) for example. By eq. (11), mAA = 0,
mBA = 1 + 2

3mBA + 1
6mCA, mCA = 1 + 1

6mBA + 13
24mCA +

1
8mDA + 1

6mEA, and the rest are omitted. Thus, there are 36
variables attained from 36 equations, and the hitting time is
26, where complete M is shown in Table II. �

To clearly present the notion of hitting time (i.e.,H(Gc)) and
spectral gap (i.e., δ(Gc)) and the relation between them, we
depict in Fig. 3 the growth of hitting time and the reciprocal
of spectral gap when |V | = 16 and |Ec| = 32 (i.e., each
node has 4 neighbors in average). We randomly created 104

communication topologies with fixed number of links (i.e.,
32 links) and observed the degree deviation measured by
averaging the mean absolute deviation between 4 and current
degree of each device. It is obvious to see when the structure
of communication topology becomes more irregular (i.e., the
degree deviation is larger), H(Gc) and 1

δ(Gc) grow accordingly,
which explicitly conforms to the induction in Proposition 2.

Then, we derive the following theorem to show the im-
pact posed by the ratio of DP devices and spectral gap
on the convergence rate. Let Xt = [ xt

0 x
t
1 ... x

t
|V |−1 ],Wt =

[wt
0 w

t
1 ... w

t
|V |−1 ], 1|V | ∈ R|V | denote the concatenation of all

local parameters, noises at round t by matrix, and the column
vector with each entry equal to 1, respectively. Also, Let
Y t =

(Xt+Wt)1|V |
|V | , Xt =

Xt1|V |
|V | , and W t =

Wt1|V |
|V | .

Theorem 1. Suppose each device executes DeepPrivacy T
rounds. Let ϕ ∈ (0, 1] be the ratio of DP devices. The
convergence rate of DeepPrivacy satisfies∑T−1

t=0 E‖∇f(Y t)‖2

T
≤ O

(∑T−1
t=0 E

[
f(Y t)− f(Xt+1)

]
Tδ(Gc)

)
+O

(
ϕU

Tδ(Gc)

)
, (12)

where U represents the summation of the variance of noises,
as defined in line 8 in Algorithm 1, over T rounds (i.e.,
U =

∑
t∈T

∑
i∈V (φit)

2, where (φit)
2 denotes the variance of

Gaussian distribution in device i at round t). The communica-
tion topology is different, say, G′c, if no device perturbs local
parameters with noises and it is expected δ(Gc) ≥ δ(G′c). Let
x∗ denote the optimal model parameters defined in eq. (5).
Then, at round T , we have∑T−1

t=0 E‖∇f(Xt)‖2

T
≤ O

(
E[f(X0)− f(x∗)]

Tδ(G′c)

)
. (13)

To further analyze the gap between ineqs. (12) and (13), we
derive the following corollary.
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Fig. 4. The relation among hitting time H(Gc), ratio of DP devices ϕ, and
global iterate G(Gc) at the 68%-accuracy threshold on CIFAR10.

Corollary 1. Let α = δ(Gc)
δ(G′c) ≥ 1 denote the factor that presents

the difference between the spectral gap of ineq. (12) and that
of ineq. (13). Following the bounds obtained in Theorem 1,
the following inequality holds∑T−1

t=0 E[‖∇f(Y t)‖2 − ‖∇f(Xt)‖2]

T

≤ O
(∑T−1

t=1 ‖W t‖2 + ϕU + f(Y 0)− α‖x∗‖2

Tδ(Gc)

)
(14)

If δ(Gc) = δ(G′c), then α = 1.

Due to the page limit, the proofs of Theorem 1 and Corollary
1 are presented in [33]. Theorem 1 shows the relation between
perturbed noises and spectral gap. Corollary 1 extends Theorem
1 to deduce that a suitable amount of imposed noises can
enlarge the spectral gap δ(Gc) (i.e., reduce the hitting time
H(Gc)), thereby increasing the connectivity of communication
topologies and accelerating the convergence rate. Specifically,
selecting a suitable number of DP devices to generate moderate
noises can slightly increase W t, ϕ,U while greatly increase α
in the right-hand side of ineq. (14). Therefore, the three main
factors affecting the global iterate G(Gc) of DeepPrivacy are
hitting time H(Gc), ratio of DP devices ϕ, and the cumulative
variance U . Then, we design a regression-based method to
predict G(Gc) based on H(Gc), ϕ, and U in the following.

To select a proper regression function, we refer to the
approach in [34] and first fix the variance U and plot the
relation among G(Gc),H(Gc), and ϕ in Fig. 4. We find that the
relation of the global iterate for various H(Gc) and ϕ is in line
with Theorem 1 and Corollary 1. We then adopt the following
regression function with a constant shift as our fitting function.

G′(Gc) = 0.3165 · H(Gc) + 121.6365 · ϕ+ 18.6251. (15)

The configuration of the regression-based method is pre-
sented in [33]. We provide the reasons to justify the adoption of
the regression-based method to predict global iterate as follows.
• Fixed privacy budget: the privacy budget is a critical factor

to influence the training performance in DL as shown in
Theorem 1. According to the experiments and simulations
in [10], it is effective to defend the model-inversion-based
attacks by setting the privacy budgets up to a sufficiently
small constant (e.g., ε = 1, δ = 10−5). With Definition 3 and
Proposition 1, the cumulative noises (i.e., the first two terms
on the right-hand side of ineq. (14)) are expected to converge
to a scalar, which means the degree of deviation caused by
perturbed noises can be under control and predicted.

• Auto hyperparameter optimization: There exist varying hy-
perparameters affecting the convergence of machine learning,



such as batch size, learning rate, and so on. Recently,
the automated machine learning (AutoML) is an emerging
paradigm to automatically tune the hyperparameters for a
given learning task, the results of which are empirically
proved to be highly effective and feasible [35]. In addition,
the hyperparameters for DL over the devices are usually the
same [5] so there is no need to concern about the influence
of the hyperparameters on the convergence.

• Linear speedup in the number of devices: Either the loss
function is convex or non-convex, the convergence rate
of DL is proved to be linear in the number of devices
[5]. That is, the convergence rate regarding to the varying
number of devices can be expected to grow linearly, showing
regression-based methods are scalable to large-scale cases.

The above three reasons explicitly explain the regression-based
method is substantially feasible and scalable to predict global
iterate. Therefore, the regression function (i.e., eq. (15)) is
used to predict the global iterate to obtain the pseudo training
time (i.e., predicted global iterate times local iterate) that
approximates the physical training time for each candidate
solution created in Section V-B. Last, the one with minimum
pseudo training time is selected as the solution.
Example 3. Following Examples 1 – 2, the toy example shows
the effect of link selection on pseudo training time. Take the
topology in Fig. 2(b) for example. The ratio of DP devices ϕ is
0.5 since devices C, D, E adopt DP to exploit non-social links
CE,DE. Recall that the local iterate is 52 (see Example 1) and
the hitting time is 26 (see Example 2). Therefore, by eq. (15),
G′(Gc) ≈ 87.7 and the pseudo training time is 4559.0. �

B. Construct the Communication Topology

To address the varying relation between global iterate and
DP devices, it is necessary to examine the effect of every
possible ratio of DP devices ϕ on global iterate. We design an
algorithm termed AutoTag. The idea is to construct a candidate
solution for each possible number of DP devices and then
pick the best one among them as the output. Thus, at most
|V |+1 candidate solutions, G0

c , ..., G
|V |
c , exist. Each candidate

Gnc has n DP devices, where 0 ≤ n ≤ |V |. Then, it follows
the guide of two scoring methods, social loner score (SLS) and
communicative loner score (CLS) (detailed later), to evaluate
links in communication topologies under specific conditions to
deal with the trade-off between global and local iterates. SLS
can suggest the suitable loner device (i.e., with fewer neighbors
in the social network) to adopt DP so as to get more bang for
the limit of DP devices. Likewise, CLS provides a measure of
proper devices with fewer neighbors, lower local iterate, but
higher hitting time. Finally, AutoTag carefully examines the
construction progress to find the best topology snapshot.

AutoTag includes the following four phases: 1) Connectivity
Guarantee Phase (CGP), 2) Loner Connection Phase (LCP), 3)
Network Expanding Phase (NEP), and 4) Snapshot Selection
Phase (SSP). Particularly, CGP first constructs an initial so-
lution, where each device has a similar number of neighbors,
for each candidate Gnc . Then, LCP connects the loners (i.e.,
the devices with low degree in the social network) to increase
opportunities for constructing a near-regular communication
topology. Afterward, NEP expands each candidate Gnc by

adding the links able to balance the hitting time and local iterate
until no link is available. Last, SSP examines each topology
snapshot at each iteration and picks the one with the minimum
pseudo training time (i.e., the predicted global iterate times
the local iterate) as candidate Gnc . Then, SSP chooses the one
with the minimum pseudo training time among all candidate
solutions (i.e., G1

c , ..., G
|v|
c ) as the communication topology Gc.

Due to the page limit, the pseudocode is presented in [33].
1) Connectivity Guarantee Phase (CGP): All the involved

devices must be connected in Gnc , where 0 ≤ n ≤ |V |. Also,
small hitting time usually arises in more regular graphs. Thus,
CGP gives the priority to connecting two devices with the
lowest degree sum in Gnc . For tie breaking, it first connects
the link included in the social network Gs and with a smaller
(dij +max{ri, rj}). Meanwhile, two devices should adopt DP
to exploit the selected non-social link if the number of DP
devices is no greater than n. Otherwise, CGP will discard it.
Note that Gnc is connected after CGP since Gs is connected.

2) Loner Connection Phase (LCP): The loner devices in the
social network Gs have fewer links connecting to other devices
and thus make Gnc hard to approximate a regular topology,
which is believed to have a lower hitting time compared to the
other topologies with the same number of links. Thus, LCP
iteratively adds a link (i, j) into Gnc , where (i, j) has a high
hitting time in Gnc and two low-degree endpoint devices in Gs
while leading to a low local iterate. Specifically, LCP iteratively
selects the pair of devices with the maximum SLS defined as
follows, where degs(i) is the degree of device i ∈ V in Gs.

SLS(i, j) =
max{mij ,mji}

(dij + max{ri, rj}) degs(i) degs(j)
. (16)

Remark that the selected link may not be in Gs such that DP
will be adopted by the two devices if the number of DP devices
is not greater than n. Otherwise, the link will be skipped.

3) Network Expanding Phase (NEP): To address the trade-
off between global and local iterates, NEP adds the links of
devices that tend to have a high hitting time while low-degree
endpoint devices in Gnc and lead to a low local iterate to ap-
proximate a near-regular topology. Specifically, NEP iteratively
selects the pair with the maximum CLS defined as follows,
where degc(i) denotes the degree of device i ∈ V in Gnc .

CLS(i, j) =
max{mij ,mji}

(dij + max{ri, rj}) degc(i) degc(j)
. (17)

4) Snapshot Selection Phase (SSP): For each n, SSP selects
the one with the minimum pseudo training time by eqs. (8) and
(15) among all the snapshots through all iterations for Gnc to be
candidate Gnc . Finally, it picks the candidate with the minimum
pseudo training time from G0

c , ..., G
|V |
c to be the solution Gc.

VI. PERFORMANCE EVALUATION

A. Implementation and Simulation Settings
We compare DeepPrivacy with naı̈ve non-convex-based DL

framework (NDLF) [14], and the non-convex-based DL frame-
work with full DP (DLFDP) [31]. In particular, NDLF just
uses the given social network as communication topology (i.e.,
Ec = Es) for training and exchanging parameters since it does
not consider the construction of communication topologies.
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Fig. 5. Performance of three frameworks on FMNIST and CIFAR10 with
|V | = 16 and 32, and K = 0, 0.4, and 0.8.

DLFDP can train with complete communication topologies
(i.e., Ec = V ×V ) since all devices are appointed to adopt DP
mechanism. The experiment setup is detailed as follows.

1) Dataset: For evaluating DeepPrivacy, two well-known
benchmarks are adopted, which are CIFAR10 [13] and FM-
NIST [23]. We evaluate the top-1 test accuracy on every device
separately over the whole dataset and depict the average perfor-
mance over all devices. For the distribution of social relations
and positions of devices, the real-world dataset Santander [15],
which stores the locations of 16216 SIoT devices in Santander
and depicts the relationship (e.g., ownership object relation)
among devices, is used to simulate the scenarios. We focus on
ownership object relations and static devices for experiments.

2) Simulation Settings: The computation time of the SIoT
devices is estimated according to the GFLOPS benchmark of
Raspberry Pi Model B series from RPi2, RPi3, and RPi4,
which requires 770s, 312s, and 114s per local round of training,
respectively. The communication time for transmitting 4-MB
model parameters per round depends on the distance between
devices. If the distance is less than 100m, the devices can
communicate over Wi-Fi and the data rate is at most 72.2 Mbps
(802.11n on 2.4 GHz) [36]. If not, the devices communicate
over LTE-M since Wi-Fi can only cover some 100m [36]. For
LTE-M, two standards are exploited, which are Cat-M1 and
Cat-M2. The data rate of LTE-M follows 3GPP releases.

3) Implementation Settings of DL: We implement two mag-
nitudes of devices, which is 16 and 32. The adopted social
and physical networks with the same number of devices are
extracted from Santander randomly. To implement DL with
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Fig. 6. Performance of two methods to construct communication topologies.

independent-and-identically distributed (IID) and non-IID data,
we follow the method of data partitions used in [37]. We
control the skewness K ∈ [0, 1] by assigning distinct fractions
of non-IID data to each device. For example, if K = 0.4, each
device is allocated with a data partition, 40% of which belongs
to the same class and 60% of which is IID. The input images
for training are preprocessed according to [3]. TensorFlow and
Keras are used to implement a convolutional neural network
(CNN) composed of 2 CLs and 3 FCLs. The details of 2
CLs and 3 FCLs are presented in [33]. The convergence index
ε = 10−5, checkpoint round H = 1, and target round T = 200,
500 for FMNIST and CIFAR10, respectively. The privacy
budget ε = 1, δ = 10−5, which follows the suggestions in
[10]. Each implementation result is averaged over 10 trials.

B. Performance on Convergence and Accuracy

The results of three frameworks with |V | = 16 on FMNIST
and CIFAR10 are summarized in Figs. 5(a) and 5(b). The
convergence rate and accuracy of three frameworks differ from
the degree of skewness. The larger the degree of skewness,
the worse the performance. The performance of DLFDP is
the worst since too much noise deviates the dynamics of
DL. NDLF can achieve higher accuracy in less rounds than
does DeepPrivacy. However, DeepPrivacy can reach better final
accuracy than NDLF since the social links restrict the growth
rate of accuracy and DeepPrivacy makes good use of DP to
break the limit. The results with |V | = 32 are summarized in
Figs. 5(c) and 5(d). DeepPrivacy still outperforms the others
in terms of convergence rate and final accuracy since it strikes
balance between noises and hitting time by properly adopting
DP. The results in Fig. 5 show that if the balance between
the amount of noises and hitting time is well-addressed,
training performance can be better, which explicitly proves
Corollary 1. To see the interplay between convergence rate
and physical time consumption, the results of physical training
time with |V | = 16, 32, K = 0 are presented in Table III.
DeepPrivacy necessitates far less physical training time than
the others regardless of the number of devices for ultimate
accuracy threshold (i.e., 91% and 74% for MNIST and CIFAR,
respectively). Remark that NDLF and DLFDP cannot achieve
some specific accuracy thresholds (e.g., 72%) so there are some
empty fields (i.e., notation -) in Table III.



TABLE III
PHYSICAL TRAINING TIME WITH 16 AND 32 DEVICES (HOUR)

Accuracy (FMNIST) 85% 87% 89% 91%

DeepPrivacy-16 2.8 (1x) 4.1 (1x) 8.9 (1x) 26.2 (1x)
NDLF-16 1.9 (0.7x) 4.5 (1.1x) 10.2 (1.2x) 39.3 (1.5x)

DLFDP-16 6.3 (2.2x) 9.7 (2.3x) 16.6 (1.9x) 42.8 (1.6x)
DeepPrivacy-32 2.8 (1x) 5.2 (1x) 9.9 (1x) 27.4 (1x)

NDLF-32 2.2 (0.8x) 4.1 (0.8x) 11.5 (1.2x) -
DLFDP-32 6.6 (2.4x) 10.4 (2x) 18.9 (1.9x) 46.3 (1.7x)

Accuracy (CIFAR10) 65% 68% 72% 74%

DeepPrivacy-16 21.8 (1x) 28.3 (1x) 48.6 (1x) 70.2 (1x)
NDLF-16 8.6 (0.4x) 13.0 (0.5x) 33.7 (0.7x) 84.9 (1.2x)

DLFDP-16 56.6 (2.6x) 80.4 (2.8x) - -
DeepPrivacy-32 31.1 (1x) 40.2 (1x) 66.8 (1x) 106.1 (1x)

NDLF-32 10.3 (0.4x) 24.0 (0.6x) - -
DLFDP-32 66.4 (2.1x) 93.6 (2.3x) - -

C. Comparison between AutoTag and the Erdös-Rényi Graph
In numerous DL-based frameworks [31], [38], [39], the

Erdös-Rényi graph (ERG) is usually considered to be com-
munication topologies since it is proved effective to construct
a graph with high connectivity [40]. We follow the approach
used in [31] to configure DeepPrivacy-ERG where communi-
cation topologies are constructed as ERG and two devices are
assigned to adopt DP mechanism if the link between them is
induced in the constructed ERG but not in the social network.
Similarly, we compare DeepPrivacy with DeepPrivacy-ERG
on FMNIST and CIFAR10 with |V | = 16, 32 and K = 0.
The only difference between the two frameworks is the built-
in approach to constructing communication topologies. The
results are summarized in Fig. 6. DeepPrivacy still outperforms
DeepPrivacy-ERG regardless of the number of devices since
AutoTag in DeepPrivacy can make good use of DP.

VII. CONCLUSION

This paper proposes a DL framework DeepPrivacy engaging
partially DP scheme for SIoT scenarios. The framework derives
an optimization problem CoTOPO. CoTOPO is very intractable
due to the new challenges, i.e., trade-off between global and
local iterates, uncertain global iterate, and varying relation
between global iterate and DP devices. We propose a novel
algorithm AutoTag to subtly make use of two scoring methods
to select suitable links and DP devices to substantially reduce
physical training time. The experiment results manifest that
DeepPrivacy and AutoTag combined outperform the state of
the art by more than 20%.
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APPENDIX

Before getting down to the theoretical proofs, we define the notations as follows:

• ‖ · ‖ denotes l2-norm.
• ‖ · ‖F denotes the matrix Frobenius norm.
• ∇g(·) denotes the gradient of a function g.
• 1|V | denotes the column vector in Rn with 1 for all elements.
• x∗ denotes the optimal solution of min

x∈Rd
f(x) := Eξ∼DF (x; ξ).

• λi(·) denotes the i-th largest eigenvalue of a matrix.

Also, we provide some practical assumptions on the dynamics of SGD and the local parameters as follows.

Assumption 1. (Bounded Variance). The variance of the stochastic gradients is bounded on each agent:

Eξi‖∇Fi(x, ξ)−∇fi(x)‖2 ≤ σ2, ∀i, x, (18)
Ei‖∇fi(x)−∇f(x)‖2 ≤ ς2, ∀i, x, (19)

Eξi‖∇Fi(x, ξ)‖2 ≤ G2, ∀i, x. (20)

Assumption 2. (L-Lipschitzian Gradients). Each function fi : RN → R,∀i ∈ n is L-smooth, that is

‖∇fi(y)−∇fi(x)‖ ≤ L‖y − x‖, ∀x, y ∈ RN , i ∈ n. (21)

Assumption 3. (Initialize from 0). We assume X0 = 0. This assumption simplifies the proof w.l.o.g.

A. Proof to Proposition 1
Before proving Proposition 1, we derive the following lemma.

Lemma 1 ( [1]). For any δ, l2 sensitivity bound ∆, and φ such that φ ≥ ∆
√

2 log 1.25/δ, the Gaussian mechanism Mφ(f(D)) :=
f(D) + Z, where Z ∼ |V|(0, φ2Id), is (∆

φ

√
2 log 1.25/δ, δ) differentially private,

where Id denotes the identity matrix with dimension equal to d. The proof to Lemma 1 can be found in [2].
Now, we are ready to bound the sensitivity as follows.

Lemma 2. Suppose that Assumption 1 holds. Then, the following inequality holds

∆t ≤ 2ηtG (22)

The proof can be found in [3]–[5].
Combining Lemmas 1 and 2, DeepPrivacy is (ε, δ)-differentially private for the devices that adopt DP by setting φt =

∆t

√
(2 log 1.25)/δ

ε where ∆t = 2ηtG. The proof is completed.

B. Proof to Theorem 1
The objective function is as follows

min
x∈Rd

f(x) :=
1

|V |

|V |∑
i=1

fi(x) =
1

|V |

|V |∑
i=1

Eξ∼Di
F (x; ξ). (23)

Two helpful lemmas can be stated:

Lemma 3. Let ei, ρ denote the ith column and the second largest singular value in A. Under assumption of communication
matrix we have

‖
1|V |
|V |
− Akei‖ ≤ ρk,∀i ∈ {1, 2, ..., |V |}, k ∈ Z+ ∪ {0},

where A0 = I.

The proof to Lemma 3 can be found in [6].



Lemma 4. We have the following inequality under Assumption 1:

E‖∂f(Xj +Wj)‖2 ≤
|V |∑
h=1

3EL2

[∥∥∥∥∥
∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2]

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

,∀j.

Proof. We consider the upper bound of E‖∂f(Xj +Wj)‖2 in the following:

E‖∂f(Xj +Wj)‖2

≤ 3E

∥∥∥∥∥∂f(Xj +Wj)− ∂f
(

(Xj +Wj)1|V |
|V |

1>|V |

)∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∂f
(

(Xj +Wj)1|V |
|V |

1>|V |

)
−∇f

(
(Xj +Wj)1|V |

|V |

)
1>|V |

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

(a)

≤ 3E

∥∥∥∥∥∂f(Xj +Wj)− ∂f
(

(Xj +Wj)1|V |
|V |

1>|V |

)∥∥∥∥∥
2

F

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

(b)

≤
|V |∑
h=1

3EL2

∥∥∥∥∥
∑|V |
i′=1 xj,i′ + wj,i′

|V |
− (xj,h + wj,h)

∥∥∥∥∥
2

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

=

|V |∑
h=1

3EL2

∥∥∥∥∥
∑|V |
i′=1 xj,i′

|V |
− xj,h +

∑|V |
i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

=

|V |∑
h=1

3EL2

[∥∥∥∥∥
∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2

+ 2

〈∑|V |
i′=1 xj,i′

|V |
− xj,h,

∑|V |
i′=1 wj,i′

|V |
− wj,h

〉]

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

=

|V |∑
h=1

3EL2

[∥∥∥∥∥
∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2

+ 2

〈∑|V |
i′=1 xj,i′

|V |
− xj,h,E

[∑|V |
i′=1 wj,i′

|V |
− wj,h

]〉]

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

(c)
=

|V |∑
h=1

3EL2

[∥∥∥∥∥
∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2]

+ 3|V |ς2 + 3E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

where (a) and (b) follow from Assumption 1 and Assumption 2, respectively and (c) comes from the fact that noises are drawn
from Gaussian distribution with mean equal to 0. This completes the proof.

We start from f

(
Xt+11|V |
|V |

)
:

Ef
(
Xt+11|V |
|V |

)
= Ef

(
(Xt +Wt)A1|V |

|V |
− γ

∂F
(
(Xt +Wt); ξt

)
1|V |

|V |

)
= Ef

(
(Xt +Wt)1|V |

|V |
− γ

∂F
(
(Xt +Wt); ξt

)
1|V |

|V |

)

≤ Ef
(

(Xt +Wt)1|V |
|V |

)
− γE

〈
∇f
(

(Xt +Wt)1|V |
|V |

)
,
∂f(Xt +Wt)1|V |

|V |

〉
+
γ2L

2
E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
|V |

∥∥∥∥∥
2

.

(24)



Note that for the last term we can split it into two terms:

E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
|V |

∥∥∥∥∥
2

= E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |
+

∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

= E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+ E

∥∥∥∥∥
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+ 2E

〈∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |
,

∑|V |
i=1∇fi(xt,i + wt,i)

|V |

〉

= E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+ E

∥∥∥∥∥
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+ 2E

〈∑|V |
i=1 Eξt,i∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |
,

∑|V |
i=1∇fi(xt,i + wt,i)

|V |

〉

(a)
= E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+ E

∥∥∥∥∥
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

, (25)

where (a) holds since E[∇Fi(·; ·)] = ∇fi(·),∀i. Combining (24) and (25), we can have

Ef
(
Xt+11|V |
|V |

)
≤ Ef

(
(Xt +Wt)1|V |

|V |

)
− γE

〈
∇f
(

(Xt +Wt)1|V |
|V |

)
,
∂f(Xt +Wt)1|V |

|V |

〉

+
γ2L

2
E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

+
γ2L

2
E

∥∥∥∥∥
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

. (26)



The second last term of (26) can be bound by σ as follow:

γ2L

2
E

∥∥∥∥∥
∑|V |
i=1∇Fi

(
(xt,i + wt,i); ξt,i

)
−
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

=
γ2L

2|V |2
E

∥∥∥∥∥
|V |∑
i=1

∇Fi

(
(xt,i + wt,i); ξt,i

)
−
|V |∑
i=1

∇fi(xt,i + wt,i)

∥∥∥∥∥
2

=
γ2L

2|V |2
E

∥∥∥∥∥
|V |∑
i=1

[
∇Fi

(
(xt,i + wt,i); ξt,i

)
−∇fi(xt,i + wt,i)

]∥∥∥∥∥
2

≤ γ2L

2|V |2

|V |∑
i=1

E

∥∥∥∥∥∇Fi
(

(xt,i + wt,i); ξt,i

)
−∇fi(xt,i + wt,i)

∥∥∥∥∥
2

(a)

≤ γ2L

2|V |2
|V | · σ2

=
γ2L

2|V |
σ2, (27)

where (a) follows from Assumption 1. Thus (26) can combine the bound of (27) and we have

Ef
(
Xt+11|V |
|V |

)
≤ Ef

(
(Xt +Wt)1|V |

|V |

)
− γE

〈
∇f
(

(Xt +Wt)1|V |
|V |

)
,
∂f(Xt +Wt)1|V |

|V |

〉
+
γ2Lσ2

2|V |

+
γ2L

2
E

∥∥∥∥∥
∑|V |
i=1∇fi(xt,i + wt,i)

|V |

∥∥∥∥∥
2

.

(a)
= Ef

(
(Xt +Wt)1|V |

|V |

)
− γ − γ2L

2
E
∥∥∥∥∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

− γ

2
E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

+
γ2Lσ2

2|V |

+
γ

2
E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)
−
∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

, (28)

where (a) comes from the fact that 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2. The last term of (28) can be bound as follow:

E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)
−
∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

= E
∥∥∥∥∇f(∑|V |i′=1 xt,i′ + wt,i′

|V |

)
−
|V |∑
i=1

∇fi(xt,i + wt,i)

|V |

∥∥∥∥2

(a)
= E

∥∥∥∥ 1

|V |

|V |∑
i=1

∇fi
(∑|V |

i′=1 xt,i′ + wt,i′

|V |

)
−
|V |∑
i=1

∇fi(xt,i + wt,i)

|V |

∥∥∥∥2

≤ 1

|V |

|V |∑
i=1

E
∥∥∥∥∇fi(∑|V |i′=1 xt,i′ + wt,i′

|V |

)
−∇fi(xt,i + wt,i)

∥∥∥∥2

(b)
=

L2

|V |

|V |∑
i=1

E
∥∥∥∥(∑|V |i′=1 xt,i′ + wt,i′

|V |

)
− (xt,i + wt,i)

∥∥∥∥2

, (29)

where (a) follows from the objective (23) and (b) holds due to Assumption 2. Eq. (29) can be seen as the l2 distance of the
local parameters on the i-th node from the averaged local parameters on all nodes. Then we can bound (28) by bounding (29)
so we can have:

Qt,i := E
∥∥∥∥(∑|V |i′=1 xt,i′ + wt,i′

|V |

)
− (xt,i + wt,i)

∥∥∥∥2



= E
∥∥∥∥( (Xt +Wt)1|V |

|V |

)
− (Xt +Wt)ei

∥∥∥∥2

= E
∥∥∥∥Xt1|V |
|V |

+
Wt1|V |
|V |

− (Xtei +Wtei)

∥∥∥∥2

= E
∥∥∥∥ (Xt−1 +Wt−1)A1|V | − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
1|V |

|V |
+
Wt1|V |
|V |

−

[
(Xt−1 +Wt−1)Aei − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
ei +Wtei

]∥∥∥∥2

= E
∥∥∥∥ (Xt−1 +Wt−1)1|V | − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
1|V |

|V |
+
Wt1|V |
|V |

−
[
(Xt−1 +Wt−1)Aei − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
ei +Wtei

]∥∥∥∥2

= E
∥∥∥∥Xt−11|V | − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
1|V |

|V |
+
Wt−11|V |
|V |

+
Wt1|V |
|V |

−
[
Xt−1Aei − γ∂F

(
(Xt−1 +Wt−1); ξt−1

)
ei +Wt−1Aei +Wtei

]∥∥∥∥2

= E
∥∥∥∥X01|V | −

∑t−1
i=0 γ∂F

(
(Xi +Wi); ξi

)
1|V |

|V |
+

1

|V |

t−1∑
i=0

Wi1|V |

−
[
X0Atei −

t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)
At−j−1ei +

t−1∑
j=0

WjAt−jei
]∥∥∥∥2

= E
∥∥∥∥X0

(
1|V |
|V |
− Atei

)
−

t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)
+

t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

(a)
= E

∥∥∥∥− t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)
+

t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

= E
∥∥∥∥ t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

+ E
∥∥∥∥ t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

− 2E
〈
−

t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)
,

t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)〉

= E
∥∥∥∥ t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

+ E
∥∥∥∥ t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

− 2E
〈
−

t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)
,E

t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)〉
(b)
= E

∥∥∥∥ t−1∑
j=0

γ∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

︸ ︷︷ ︸
=:T1

+E
∥∥∥∥ t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

︸ ︷︷ ︸
=:T2

where (a) follows from Assumption 3 and (b) comes from the fact that noises are drawn from Gaussian distribution with mean
equal to 0. Then we give bound on T1 and T2.

T1 = γ2E
∥∥∥∥ t−1∑
j=0

∂F

(
(Xj +Wj); ξj

)(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2



≤ 2γ2E
∥∥∥∥ t−1∑
j=0

[
∂F

(
(Xj +Wj); ξj

)
− ∂f(Xj +Wj)

](
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

+ 2γ2E
∥∥∥∥ t−1∑
j=0

∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

= 2γ2
t−1∑
j=0

E
∥∥∥∥[∂F((Xj +Wj); ξj

)
− ∂f(Xj +Wj)

](
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

+ 2γ2E
∥∥∥∥ t−1∑
j=0

∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

≤ 2γ2
t−1∑
j=0

E
∥∥∥∥∂F((Xj +Wj); ξj

)
− ∂f(Xj +Wj)

∥∥∥∥2∥∥∥∥1|V |
|V |
− At−j−1ei

∥∥∥∥2

+ 2γ2E
∥∥∥∥ t−1∑
j=0

∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

≤ 2γ2|V |σ2
t−1∑
j=0

ρt−j−1 + 2γ2E
∥∥∥∥ t−1∑
j=0

∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

≤ 2γ2|V |σ2

1− ρ
+ 2γ2E

∥∥∥∥ t−1∑
j=0

∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

≤ 2γ2|V |σ2

1− ρ
+ 2γ2

t−1∑
j=0

E
∥∥∥∥∂f(Xj +Wj)

(
1|V |
|V |
− At−j−1ei

)∥∥∥∥2

≤ 2γ2|V |σ2

1− ρ
+ 2γ2

t−1∑
j=0

E‖∂f(Xj +Wj)‖2
∥∥∥∥1|V |
|V |
− At−j−1ei

∥∥∥∥2

(a)

≤ 2γ2|V |σ2

1− ρ

+ 6L2γ2
t−1∑
j=0

|V |∑
h=1

E
[(∥∥∥∥∥

∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2)∥∥∥∥1|V |

|V |
− At−j−1ei

∥∥∥∥2]

+
6|V |ς2γ2

1− ρ
+ 6γ2

t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2∥∥∥∥1|V |
|V |
− At−j−1ei

∥∥∥∥2

(b)

≤ 2γ2|V |σ2

1− ρ
+

6|V |ς2γ2

1− ρ
+ 6L2γ2

t−1∑
j=0

|V |∑
h=1

E
[(∥∥∥∥∥

∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2)
ρt−j−1

]

+ 6γ2
t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

ρt−j−1 (30)

Then T2 can be bound as follows:

T2 = E
∥∥∥∥ t−1∑
j=0

Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

≤
t−1∑
j=0

E
∥∥∥∥Wj

(
1|V |
|V |
− At−jei

)∥∥∥∥2

≤
t−1∑
j=0

E‖Wj‖2
∥∥∥∥(1|V |
|V |
− At−jei

)∥∥∥∥2



≤
t−1∑
j=0

E‖Wj‖2ρt−j

≤
t−1∑
j=0

d∑
i=1

|V |∑
l=1

E|wil|2ρt−j

≤ ϕd|V |
t−1∑
j=0

φ2
jρ
t−j

Combining T1 and T2, we can obtain

Qt,i ≤
2γ2|V |σ2

1− ρ
+

6|V |ς2γ2

1− ρ

+ 6L2γ2
t−1∑
j=0

|V |∑
h=1

E
[(∥∥∥∥∥

∑|V |
i′=1 xj,i′

|V |
− xj,h

∥∥∥∥2

+

∥∥∥∥∑|V |i′=1 wj,i′

|V |
− wj,h

∥∥∥∥∥
2)
ρt−j−1

]

+ 6γ2
t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

ρt−j−1 + ϕd|V |
t−1∑
j=0

φ2
jρ
t−j

≤ 2γ2|V |σ2

1− ρ
+

6|V |ς2γ2

1− ρ
+ 6L2γ2

t−1∑
j=0

|V |∑
h=1

E[Qj,hρt−j−1]

+ 6γ2
t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

ρt−j−1 + ϕd|V |
t−1∑
j=0

φ2
jρ
t−j (31)

Now T1 + T2 is bound and recall that (29) asks for average performance on all nodes, which can be defined by:

EPt :=

∑n
i=1 EQt,i
|V |

≤ 2γ2|V |σ2

1− ρ
+

6|V |ς2γ2

1− ρ
+ 6|V |L2γ2

t−1∑
j=0

E[Pjρt−j−1]

+ 6γ2
t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

ρt−j−1 + ϕd|V |
t−1∑
j=0

φ2
jρ
t−j

Summing from t = 0 to T − 1 we have:
T−1∑
t=0

EPt ≤
2γ2|V |σ2

1− ρ
T +

6|V |ς2γ2

1− ρ
T + 6|V |L2γ2

T−1∑
t=0

t−1∑
j=0

E[Pjρt−j−1]

+ 6γ2
T−1∑
t=0

t−1∑
j=0

E

∥∥∥∥∥∇f
(

(Xj +Wj)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

ρt−j−1 + ϕd|V |
T−1∑
t=0

t−1∑
j=0

φ2
jρ
t−j

(a)

≤ 2γ2|V |σ2

1− ρ
T +

6|V |ς2γ2

1− ρ
T +

6|V |L2γ2

1− ρ

T−1∑
t=0

EPt

+
6γ2

1− ρ

T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

+
ϕd|V |
(1− ρ)

T−1∑
t=0

φ2
t

where (a) can be achieved by rearranging the summations. Then by rearranging the terms we can obtain the bound for the
summation of EPt’s from t = 0 to T − 1:(

1− 6|V |L2γ2

1− ρ

) T−1∑
t=0

EPt ≤
2γ2|V |σ2

1− ρ
T +

6|V |ς2γ2

1− ρ
T +

6γ2

1− ρ

T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

+
6γ2

1− ρ

T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

+
ϕd|V |
(1− ρ)

T−1∑
t=0

φ2
t



T−1∑
t=0

EPt ≤
2γ2|V |σ2T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) +
6|V |ς2γ2T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

)
+

6γ2

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

+
ϕd|V |
(1− ρ)

T−1∑
t=0

φ2
t (32)

Substituting the last term of (28) with (29) and (32), we have

Ef
(
Xt+11|V |
|V |

)
≤ Ef

(
(Xt +Wt)1|V |

|V |

)
− γ − γ2L

2
E
∥∥∥∥∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

− γ

2
E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

+
γ2Lσ2

2|V |
+
γ

2
L2EPt (33)

Summing from t = 0 to T − 1 we get:

γ − γ2L

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

+
γ

2

T−1∑
t=0

E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

≤
T−1∑
t=0

E
[
f

(
(Xt +Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
+
γ2TLσ2

2|V |
+

L2γ3nσ2T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) +
3L2nς2γ3T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

)
+

3L2γ3

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)
1>|V |

∥∥∥∥∥
2

+
γL2ϕd|V |

∑T−1
t=0 φ2

t

2(1− ρ)

(
1− 6|V |L2γ2

1−ρ

)
=

T−1∑
t=0

E
[
f

(
(Xt +Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
+
γ2TLσ2

2|V |
+

L2γ3nσ2T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) +
3L2nς2γ3T

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

)
+

3|V |L2γ3

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) T−1∑
t=0

E

∥∥∥∥∥∇f
(

(Xt +Wt)1|V |
|V |

)∥∥∥∥∥
2

+
γL2ϕd|V |

∑T−1
t=0 φ2

t

2(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) ,
By rearranging the inequality above, we obtain:

γ − γ2L

2

T−1∑
t=0

E
∥∥∥∥∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

+

(
γ

2
− 3|V |L2γ3

(1− ρ)
(

1− 6|V |L2γ2

1−ρ

)) T−1∑
t=0

E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

≤
T−1∑
t=0

E
[
f

(
(Xt +Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
+
γ2TLσ2

2|V |
+

L2γ3|V |T (σ2 + 3ς2)

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

)
+

γL2ϕd|V |
∑T−1
t=0 φ2

t

2(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) (34)

Multiplying the left and the right side of (34) by γ
T , we obtain:

1− γL
2T

T−1∑
t=0

E
∥∥∥∥∂f(Xt +Wt)1|V |

|V |

∥∥∥∥2

+
1

T

(
1

2
− 3|V |L2γ2

(1− ρ)
(

1− 6|V |L2γ2

1−ρ

)) T−1∑
t=0

E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

≤

∑T−1
t=0 E

[
f

(
(Xt+Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
γT

+
γLσ2

2|V |
+

L2γ2|V |(σ2 + 3ς2)

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) +
L2ϕd|V |

∑T−1
t=0 φ2

t

2T (1− ρ)

(
1− 6|V |L2γ2

1−ρ

) (35)



Let γ ≤ 1
L and remove the

∥∥∥∥∂f(Xt+Wt)1|V |
|V |

∥∥∥∥2

terms on the left hand side of (35) , we obtain:

1

T

(
1

2
− 3|V |L2γ2

(1− ρ)
(

1− 6|V |L2γ2

1−ρ

)) T−1∑
t=0

E
∥∥∥∥∇f( (Xt +Wt)1|V |

|V |

)∥∥∥∥2

≤

∑T−1
t=0 E

[
f

(
(Xt+Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
γT

+
γLσ2

2|V |
+

L2γ2|V |(σ2 + 3ς2)

(1− ρ)

(
1− 6|V |L2γ2

1−ρ

) +
L2ϕd|V |

∑T−1
t=0 φ2

t

2T (1− ρ)

(
1− 6|V |L2γ2

1−ρ

) (36)

Let

P1 :=

(
1

2
− 3|V |L2γ2

(1− ρ)P2

)
, P2 :=

(
1− 6|V |L2γ2

1− ρ

)
We can rewrite (36) as follows:∑T−1

t=0 E
∥∥∥∥∇f( (Xt+Wt)1|V |

|V |

)∥∥∥∥2

T

≤

∑T−1
t=0 E

[
f

(
(Xt+Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
γTP1

+
γLσ2

2|V |P1
+
L2γ2|V |(σ2 + 3ς2)

(1− ρ)P1P2
+
L2ϕd|V |

∑T−1
t=0 φ2

t

2T (1− ρ)P1P2
, (37)

To further analyze the result of convergence of (37), we let γ =
√

1−ρ
C|V |L2 where C > 0 is a constant such that P1, P2 > 0. we

obtain:

∑T−1
t=0 E

∥∥∇f( (Xt+Wt)1|V |
|V |

)∥∥2

T
≤ O

(∑T−1
t=0 E

[
f

(
(Xt+Wt)1|V |

|V |

)
− f

(
Xt+11|V |
|V |

)]
T (1− ρ)

)
+O

(
ϕU

T (1− ρ)

)
, (38)

where U =
∑T−1
t=0 φ2

t .
If no device perturbs local parameters with noises, then the spectral gap is different, say (1−ρ′). Assume the optimal solution

is obtained at time T we can obtain the bound below:∑T−1
t=0 E

∥∥∇f(Xt1|V |
|V |

)∥∥2

T
≤ O

(E
[
f

(
X01|V |
|V |

)
− f(x∗)

]
T (1− ρ′)

)
(39)

The theorem follows.

C. Proof to Corollary 1
Following the results in Theorem 1, we obtain the following inequality.

∑T−1
t=0 E

∥∥∇f( (Xt+Wt)1|V |
|V |

)∥∥2

T

(a)

≤
E
[∑T−1

t=1 L/2
∥∥Wt1|V |
|V |

∥∥2
+ f

( (X0+W0)1|V |
|V |

)]
T (1− ρ)

+
γLσ2

2|V |P1
+
L2γ2|V |(σ2 + 3ς2)

(1− ρ)P1P2
+

L2ϕd|V |U
2T (1− ρ)P1P2

, (40)

where (a) follows from Assumption 2.
Also, the bound of the convergence rate without noises is as follows.∑T−1

t=0 E
∥∥∇f(Xt1|V |

|V |
)∥∥2

T

≤ L‖x∗‖2

2T (1− ρ′)
+

γLσ2

2|V |P1
+
L2γ2|V |(σ2 + 3ς2)

(1− ρ′)P1P2
(41)

Suppose that α = 1−ρ
1−ρ′ ≥ 1. Subtracting (40) with (41), we yield



∑T−1
t=0 E

∥∥∇f( (Xt+Wt)1|V |
|V |

)∥∥2

T
−
∑T−1
t=0 E

∥∥∇f(Xt1|V |
|V |

)∥∥2

T

≤
∑T−1
t=1 L/2

∥∥Wt1|V |
|V |

∥∥2
+ f

( (X0+W0)1|V |
|V |

)
T (1− ρ)

+
L2ϕd|V |U

2T (1− ρ)P1P2
− Lα‖x∗‖2

2T (1− ρ)
+

(1− α)[L2γ2|V |(σ2 + 3ς2)]

(1− ρ)P1P2

(a)

≤
∑T−1
t=1 L/2

∥∥Wt1|V |
|V |

∥∥2
+ f

( (X0+W0)1|V |
|V |

)
T (1− ρ)

+
L2ϕd|V |U

2T (1− ρ)P1P2
− Lα‖x∗‖2

2T (1− ρ)

= O
(∑T−1

t=1

∥∥Wt1|V |
|V |

∥∥2
+ f

( (X0+W0)1|V |
|V |

)
+ ϕU − α‖x∗‖2

T (1− ρ)

)
, (42)

where (a) holds since α ≥ 1. The proof is completed.

D. Implementation Details regarding Regression Function and Neural Network
1) Regression Function: Sklearn in python is used to implement regression function. The function is trained to fits the training

curves in our real dataset with hitting time H(Gc), and ratio of DP devices ϕ. Each data point in the real dataset is formulated
as a three-tuple vector. For example, a vector (100, 0.1, 300) indicates a communication topology with H(Gc) = 100, ϕ = 0.1,
requires 300 rounds achieve 70% accuracy on the benchmark CIFAR10. Mean square error (MSE) works as loss function to
carry out gradient descent for updating the regression model. The learning rate is set to 0.001, and initial weights are randomly
select a real number between 1 and 10.

2) Neural Network: Both two CLs have 64 5× 5 channels and each layer is followed by a 3× 3 max pooling with a stride
of two and normalization. The first two FLs have 384 and 192 units (each of them with ReLu activation followed by one
dropout), and the last FL is the final softmax output layer with 10 units. The initial model parameters follow the suggestions
in [7], [8]. The learning rate, learning rate decay, number of local epochs, and local minibatch size, are set to 0.2, 0.99, 5, and
64, respectively.



E. Pseudocode of AutoTag

Algorithm 2 AutoTag
Input: The social network Gs = (V,Es), physical network Gp = (V,Ep), communication time dij of each link (i, j) ∈ Ep,

and computation time ri of each device i ∈ V
Output: The communication topology Gc = (V,Ec)

Connectivity Guarantee Phase (CGP)

1: Collection of candidate solutions S is empty initially;
2: for all 0 ≤ n ≤ |V | do
3: Candidate solution Enc ← ∅;
4: L← V × V ;
5: The set of devices adopting DP N ← ∅;
6: while |Enc | < |V | do
7: Link set L ← arg mine=(i,j)∈L(degc(i) + degc(j));
8: Link l← arg mine=(i,j)∈L∩Es

(dij + max{ri, rj});
9: if link l does not exist then

10: Link l← arg mine=(i,j)∈L(dij + max{ri, rj});

11: L← L \ {l};
12: if l ∈ Es or |N ∪ V (l)| ≤ n then
13: Enc ← Enc ∪ {l};
14: if l /∈ Es then
15: N ← N ∪ V (l);
16: Gnc ← (V,Enc );
17: Collection of candidate solutions S← S ∪ {Gnc };

Loner Connection Phase (LCP)

18: for all 0 ≤ n ≤ |V | do
19: L← V × V \ Enc ;
20: while |N | < n and |L| > 0 do
21: Update mij for each pair i, j ∈ V via eq. (11);
22: Link l← arg maxe=(i,j)∈L SLS(i, j);
23: L← L \ {l};
24: if l ∈ Es or |N ∪ V (l)| ≤ n then
25: Enc ← Enc ∪ {l};
26: if l /∈ Es then
27: N ← N ∪ V (l);
28: Gnc ← (V,Enc );
29: Collection of candidate solutions S← S ∪ {Gnc };

Network Expanding Phase (NEP)

30: for all 0 ≤ n ≤ |V | do
31: L← V × V \ Enc ;
32: while |L| > 0 do
33: Update mij for each pair i, j ∈ V via eq. (11);
34: Link l← arg maxe=(i,j)∈L CLS(i, j);
35: L← L \ {l};
36: if l ∈ Es or |N ∪ V (l)| ≤ n then
37: Enc ← Enc ∪ {l};
38: if l /∈ Es then
39: N ← N ∪ V (l);
40: Gnc ← (V,Enc );
41: Collection of candidate solutions S← S ∪ {Gnc };

Snapshot Selection Phase (SSP)

42: Gc ← arg minS∈S(G′(S) · L(S));
43: return Gc;
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