
Model Partition Defense against GAN Attacks on
Collaborative Learning via Mobile Edge Computing

Cheng-Wei Ching, Tzu-Cheng Lin‖, Kung-Hao Chang‖, Chih-Chiung Yao, and Jian-Jhih Kuo∗

Dept. of Computer Science and Information Engineering, National Chung Cheng University, Chiayi, Taiwan

Abstract—With growing concerns about privacy issues of ma-
chine learning, collaborative learning (CL) is developed to offer
on-device training. However, adversarial behaviors of model inver-
sion (MI) are undermining privacy of training data. Specifically,
adversaries act as ordinary participants in CL and reproduce
private data of a class in training data by training generative
adversarial networks (GAN) on the fly, unknowingly. To this end,
we design a novel model partition defense, PAMPAS, over user
devices and trustworthy edge server to resist GAN attack, and
formulate a new optimization problem, TENSOR, to optimize
training time. To address the challenges that come with PAMPAS,
we propose an algorithm TESLA that yields the optimal solution.
Experiment and simulation results manifest that PAMPAS effec-
tively defend GAN attack and TESLA reduces training time by
50% compared with other solutions.

Index Terms—federated learning, GAN attack, model partition
defense, mobile edge network

I. INTRODUCTION

The rapid growth of collaborative learning (CL)1 over user

devices in mobile networks raises further concerns for model

inversion (MI) [1]. The primary rationale behind CL is to

train machine learning models on user devices with local data

unexposed to central server [2]. However, sensitive data of

victims (e.g., images) can be unknowingly reproduced via a

generative adversarial network (GAN) by ordinary participants

in disguise (i.e., adversaries) who take part in CL training phase

(see Section II-A). Compared with MI in centralized learning,

defending GAN attacks in CL is more challenging due to the

reasons as follows: 1) Updated parameters of each iteration

are exposed to adversaries who join the training phase. 2)

Manipulated local model parameters are considered difficult

to detect and eventually incur accuracy downgrade [3].

Many traditional MI attacks (not in CL) have been presented

to steal sensitive information of training data. One is white-

box attack where trained models are accessible to adversaries

[4], [5]. Adversaries can gradually generate representative data

similar to training data by establishing an attack model to

mimic characteristics of training data. The other is black-box

in which only prediction queries can be made by adversaries

[6], [7]. Based on the different behaviors of models in the face

of seen and unfamiliar data, adversaries are able to identify the

differences and differentiate the members and non-members of

training data by exploiting GANs. However, these attacks are

found difficult to reproduce training data once models get as

complex as are convolutional neural networks (CNNs) [6], [7].

Besides, Differential Privacy [8] (i.e., adding noises in data)

has been proved effective to defend black-box attacks [9], [10].

∗ indicates the corresponding author; ‖ denotes the equal contributions.
Corresponding author’s email: lajacky@cs.ccu.edu.tw
1CL includes distributed learning, federated learning, or decentralized learn-

ing, where several devices would take part in training phase [1].

In contrast, GAN attacks in CL are much more intractable

since models and parameters updates are usually exposed to

adversaries while noises added in data by Differential Privacy

may completely collapse CL training phase [1].

To mitigate the issue, our idea is to leave the entire model

partially unknown to users and employ nearby edge servers2

to assist the partial training. That is, the model is partitioned

into two parts, and users are responsible for training only one

of them. Each layer of neural networks is able to be assigned

to either user devices or edge server while each layer requires

different computation time on different parties. Furthermore,

two consecutive layers assigned to different parties should yield

transmission time. In addition, to mitigate security concerns,

the input and output layers should be trained on user devices to

prevent the edge server from directly accessing personal data

and labels. However, the state-of-the-art approaches of model

partition emphasize the inference time minimization for trained

models [11], [12]. None of them uses model partition to jointly

1) resist the GAN attack and 2) minimize the training time

(including computation and transmission time) in CL scenarios,

thereby providing the motivation of this paper.

Optimally partitioning the model into two parts to minimize

total training time yet satisfying security concerns raises new

research challenges as follows. 1) Uncertain effect of layer con-

cealing. Model partition can prevent adversaries from knowing

the entire model. However, concealing different layers from

users (including adversaries) may lead to different performance

of resisting GAN attacks (detailed in Section II). Thus, the set

of layers assigned to user devices should be carefully deter-

mined to secure data privacy. 2) Computation and transmission

time trade-off. Compared to user devices, powerful edge server

can speed up the computation for acquiring new parameters of

a local model. However, the size of data propagated between

two consecutive layers should be addressed to avoid overlength

transmission time, especially at layers with multiple branches.

Moreover, more user devices may generate more intermediate

data transmitted to the edge server for computation. 3) Forward

and backward propagation interplay. During each epoch, the

data are propagated forward to obtain the prediction loss and

then backward to derive the new model parameters. The com-

putation overhead and transmission overhead are different in

the forward and backward propagation. Thus, the forward and

backward propagation should be considered simultaneously.

To verify uncertain effect of layer concealing, we first im-

plement a GAN attack method [1] to find the appropriate layers

concealed from user devices. Based on the observation results,

we present a novel Privacy-Aware Model Partition Defense

System (PAMPAS) to defend against GAN attacks (in Section

2We assume that the edge server belongs to trustworthy third parties.

II). A new optimization problem Time-Efficient Secure Model

Partition Problem (TENSOR) is formulated to optimize the

system performance (in Section III). With the given parameters:

1) a CNN of CL, 2) computation overheads of each layer in

forward and backward propagation, 3) transmission overhead

from a layer to the next layers in forward and backward

propagation, 4) computation capability of user devices and

edge server, 5) transmission capacity between user devices and

edge server, and 6) number of user devices, TENSOR asks for

a set of layers concealed from user devices to minimize the

training time in an epoch while ensuring that each layer is

executed on appropriate party to secure data privacy. We then

propose a Time-Efficient Secure Layer Concealing Algorithm

(TESLA), to construct an auxiliary graph to find the optimal

solution (in Section IV). Experiment and simulation results

show that PAMPAS with TESLA can effectively defend against

GAN attacks and minimize the training time with edge server

compared with several naive methods (in Sections II-B and V).

II. ATTACK MODEL AND DEFENSE SYSTEM

A. Attack Model

Fig. 1 shows the overview of GAN attack [1]. The adversary

pretends as an ordinary user to join in CL for a given model3

and receive parameters from the central sever4 in each global

epoch.5 It secretly sets up a GAN where 1) the discriminator

is a copy of the global model received from the central server

and 2) the generator targets a class6 in the global model and

generates similar data that can fool the discriminator. Then,

the generated data will be tagged with a fake label and merged

with the local real dataset of the adversary to train the model.

Eventually, a new but biased local update is uploaded to the

central server for the aggregation with local updates from other

users. Note that the local update of model parameters uploaded

from the adversary is indistinguishable from that uploaded by

legitimate participants. As a result, the global model becomes

biased and intends to ask for more accurate information of

the attacked class to enhance the feature extractors and fix the

bias, whereas this helps privately-trained GAN of the adversary

generate more human-readable images for the target class [1].

B. Effect of Concealing Different Layers

To observe the effect of concealing different layers from user

devices, we implement a GAN attack method [1] with Python

3.7.6, TensorFlow 2.1.0, and Keras 2.3.1. We adopt MNIST

dataset [14] of handwritten digits and AT&T dataset [15] of

faces. MNIST dataset contains 70000 images of handwritten

digits, and AT&T dataset includes 40 different faces, each of

which has 10 images. Following [1], the number of output

neurons in the CL models for MNIST and AT&T are set to

11 and 41, respectively. For the experiments on MNIST (or

3It is nature to assume that the model is a CNN, which is shown effective
in image processing and object recognition.

4User devices can also use gossip algorithms to achieve the consensus model
by averaging belief with neighbors locally without a central server [13].

5Here, global epoch means the exchange of newly updates of parameters,
whereas local epoch means the training of each user device with its local data.

6The class can represent an infected organ in healthcare applications, a face
of an individual in attendance system or a specific object in pattern recognition.

��������� ���������

!"#��$��%

&�'���()��#��

*$�� +,-�,�

*$��

.�#,-�

���������

*$��

.�#,-�

*$��

.�#,-�

.,$-�,�,'��/�

&/0% �/

.���

1�'����/�

Fig. 1. Overview of GAN Attack on CL

AT&T) dataset, we set both the learning rate for both the CL

model and the generator to 1e-3 (or 2e-4), and their learning

rate decay and batch size are set to 1e-7 (or 1e-8) and 64 (or

32). For each epoch, each ordinary user device takes 100 (or

10) images for each class to locally train the model. At the

same time, the adversary targets a specific class and employs

the CL model to be the discriminator to train its generator

locally by generating 1000 (or 400) images of the target class

for gradient update. The adversary then outputs 100 (or 10)

images of the target class but tagged with a fake label (e.g.,

11th class for MNIST and 41th class for AT&T) to locally train

the CL model. All the users including the adversary upload the

local updates to the central server for aggregation. The above

operation is repeated until the generator of adversary can output

human-readable images. All the models use Adam optimizer.

Fig. 2 shows the images output by GAN attack in different

epochs and the images appear clearer after 50 epochs. Then,

different number of layers are concealed from user devices to

examine the defense performance. Note that all user devices are

not allowed to access the parameters of concealed layers. Intu-

itively, the more concealed layers tend to prevent the adversary

from generating human-readable images. However, concealing

the front7 layers is much less effective than concealing the

back layers as shown in Fig. 3. The generator can still capture

some features to draw the face shadow when front layers are

concealed from user devices, but the generated images become

almost meaningless once a back layer is concealed. Thus, our

system PAMPAS conceals at least one back layer from user

devices and performs effectively as shown in Fig. 4.

C. Defense System - PAMPAS

PAMPAS is built over a mobile edge network which consists

of user devices, edge servers, and a central server. The user

devices (including the adversary) participant the training phase

coordinated by the central server. The central server collects

the information of user devices and edge servers (including

computation capability and transmission capacity) before the

training phase. Then, the central server selects a set of layers

concealed from user devices. The first and the last layers of the

model must be computed on user devices to prevent the edge

servers from accessing personal images and labels. PAMPAS

executes at least the second-last layers8 on edge servers since at

least 1 back layer should be concealed. Also, misplaced layers

may prolong the overall training time. Therefore, our goal is to

7Here the front (or back) layers are near the input (or output) layers.
8It may have 2 second-last layers since a model could have branching layers.

Original epoch 001 epoch 005 epoch 006 epoch 015 epoch 025 epoch 030 epoch 045 epoch 050 epoch 055 epoch 060

Original epoch 001 epoch 010 epoch 015 epoch 020 epoch 030 epoch 040 epoch 070 epoch 090 epoch 140 epoch 200

Fig. 2. Images generated in different epochs with GAN attack on CL for MNIST (Zero) and AT&T (face #13).

GAN attack 1 front layer 2 front layers 3 front layers 4 front layers 5 front layers 1 back layer 2 back layers 3 back layers

Fig. 3. Concealing different number of layers from the front or back to prevent adversaries from getting the entire model.

Original epoch 001 epoch 005 epoch 006 epoch 015 epoch 025 epoch 030 epoch 045 epoch 050 epoch 055 epoch 060

Original epoch 001 epoch 010 epoch 015 epoch 020 epoch 030 epoch 040 epoch 070 epoch 090 epoch 140 epoch 200

Fig. 4. Images generated in different epochs with GAN attack on CL in PAMPAS for MNIST (Zero) and AT&T (face #13).

balance the overheads between user devices and edge servers

to minimize the training time while ensuring the data privacy.

III. THE TENSOR PROBLEM

This paper considers a mobile edge network that consists

of: 1) n user devices (i.e., participants in CL) and 2) an edge

server, where pu and ps denote the computation capability

of an user device and the edge server, respectively, and r is

the transmission capacity between a user device and the edge

server.9 The given CL model is a DAG G = {V,E}, where

1) V denotes layers in the CNN and each layer v ∈ V has

computation overheads cf (v) and cb(v) in the forward and

backward propagation during an epoch, and

2) E denotes links between two consecutive layers in the

forward propagation and each forward link ⇀vw ∈ E has

transmission overheads10 df (v) and db(v) in the forward

and backward propagation during an epoch, respectively.

Thus, the computation time of layer v ∈ V on user devices and

edge server are in an epoch denoted by tu(v) = cf (v)+cb(v)
pu

9To explore the intrinsic properties of the TENSOR, we assume that the
computing capability and transmission capacity of user devices are identical.

10For out-degree links from layer v, the data in both forward and backward
propagation are proportional to the number of neurons in layer v [16].

and ts(v) = n(cf (v)+cb(v))
ps since the edge server has to process

the data from n user devices. Note that each layer could have

two or more branching next layers. Then, the transmission time

between layer v and its next layers in an epoch is denoted by

tt(v) = df (v)+|δ+(v)|·db(v)
r

, where δ+(v) denotes the sets of

out-degree links of node v ∈ V in G. Following the settings

above, the TENSOR can be formulated as an integer linear

programming (ILP) as follows.

Let binary decision variables yuv and ysv respectively denote

whether layer v ∈ V is assigned to user devices or to the edge

server. Each layer is executed on exactly one party, yielding

yuv + ysv = 1, ∀v ∈ V. (1)

Let i and o denote the input and output layer in V . To avoid

exposing the personal data and labels to the edge server, the

layers i and o should be executed on user devices, i.e.,

yui = yuo = 1. (2)

Recall that concealing the second-last layers from user devices

is more likely to resist the GAN attack (see Section II). Let

L ⊆ V denote the set of second-last layers. Thus,

ysv = 1, ∀v ∈ L. (3)

TABLE I
MODEL INFORMATION

v1 v2 v3 v4 v5 v6 v7

c
f (v) 60 70 10 40 10 40 10

c
b(v) 50 45 15 25 5 30 30

d
f (v) 8 30 25 10 30 5 0

d
b(v) 1 0.6 0.8 0.4 1 0.2 0

Fig. 5. A given model DAG.

Then, all the layers will be partitioned into two sets, and the

transmission of layer v is required if its next layers are assigned

to another party different from that of v. Let binary decision

variable xv denote whether to transmit the data of layer v via

wireless communication. The relations are shown as follows,

xv ≥ yuv − yuw, ∀v, w ∈ V : ⇀vw ∈ E (4a)

xv ≥ yuw − yuv , ∀v, w ∈ V : ⇀vw ∈ E (4b)

xv ≤ yuv + yuw, ∀v, w ∈ V : ⇀vw ∈ E (4c)

xv ≤ 2− yuv − yuw, ∀v, w ∈ V : ⇀vw ∈ E (4d)

Therefore, the problem can be formally defined as follows.

Definition 1. Given a model DAG G = (V,E) associated

with computation overhead cf (v) and cb(v) and transmission

overhead df (v) and db(v) for each v ∈ V in an epoch,

computation capabilities pu and ps of each user device and the

edge server, and transmission capacity r between user device

and edge server, the Time-Efficient Secure Model Partition

Problem (TENSOR) finds a set of layers concealed from

user devices, satisfy the constraints (1)−(4), and minimize the

training time including computation and transmission time, i.e.,

minimize
∑

v∈V

xv · t
t(v) +

∑

v∈V

(yuv · tu(v) + ysv · t
s(v)) (5)

Example 1. The example shows the effect of different model

partition strategies for TENSOR, where V has seven nodes

(i.e., layers from v1 to v7 in Fig. 5). Table I summarizes the

given values of computation and transmission overhead of each

node.11 Assume that the computation capabilities of each user

device pu and the edge server ps are 25 and 100 GFLOPS, the

transmission capacity r is 2 Mbps, and 20 user devices take

part in the CL. Fig. 6(a) compares TESLA with two intuitive

approaches: 1) concealing only second-last layers from user

devices (BackCut) and 2) minimum cut (MinCut). BackCut

only assigns the second-last layer v6 to the edge server and

the computation time is (60 + 70 + 10 + 40 + 10 + 10)/25 +
(50+ 45+ 15+ 250+ 5+30)/25 = 14.8 on user devices and

20× (40+ 30)/100 = 14 on the edge server and transmission

time (30 + 1)/2 + (5 + 0.2)/2 = 18.1, yielding training time

14.8 + 14 + 18.1 = 46.9. By contrast, MinCut selects a set of

links with the total minimum transmission time 7.6 and only

assigns layer v1 to user devices. Then, the computation time is

6 on user devices and 58 on the edge server. Thus, the elapsed

time for an epoch is 71.6. Finally, TESLA (detailed in Section

IV) assigns layers v1, v2, v3, v4, and v7 to user devices, which

only requires computation time 14.2 on user devices and 17 on

edge server and transmission time 7.8. The training time for

an epoch is 39. Compared with BackCut and MinCut, TESLA

reduces training time by 16% and 46% in an epoch. �

11Note that last layer v7 has no next layer and thus d
f (v7) = d

b(v7) = 0.

������ !"#�� $%&'(

(a) Results of different strategies. (b) Auxiliary graph G of TESLA

Fig. 6. Example of TENSOR. (a) Three lines represent different model
partition strategies. (b) The dashed links have infinite weights.

IV. ALGORITHM DESIGN

Recall that the traditional CL executes all the layers on

user devices (UnCut). However, UnCut does not conceal any

layer from user devices and thus the adversary can reconstruct

the images of a specific target class with GAN attack. Two

naive approaches can be applied to TENSOR on PAMPAS.

One is concealing only second-last layers from user devices

(BackCut). The other one is to directly employ the minimum

cut (MinCut) [17] to partition the model (except the last layer)

into two parts by cutting a set of links with the minimum

total transmission time. However, both of them neglect the

computation and transmission time trade-off and forward and

backward propagation interplay, and the overlengh computa-

tion or transmission time may prolong overall training time.

To solve TENSOR, we propose an algorithm named TESLA

to carefully address both the challenges simultaneously. The

idea is to construct an undirected auxiliary graph G to decide

a set of layers concealed from user devices. The graph G first

clones G to have the layers and links of the model. Besides,

two extra computation nodes are added into G to represent user

devices and edge server, respectively. To determine the suitable

party for each layer, TESLA introduces two computation links

into G to connect each layer’s node to the two computation

nodes, respectively. Thus, cutting one computation link for

a layer indicates that the layer is not executed on the cor-

responding party. Accordingly, the weight of computing link

connecting to the computation node of user devices (or edge

server) is set to the computing time of executing the layer on

the edge server (or user devices). Similarly, for each link from

node v to node w in G, the weight of the transmission link

between nodes v and w in G is set to their data transmission

time. Note that some layers may have more than one next layers

in G. To deal with the cases, TESLA removes the transmission

links between v and the nodes of next layers in G, and then

creates a virtual node v′ to connect v to the nodes of its next

layers via virtual links instead. The weight of the link between

v and v′ is set to the total transmission time between layer v
and its next layers, whereas the weights of links between v′ and

the nodes of next layers are set to infinite. TESLA then finds a

set of links with the minimum total computing and transmission

time to partition the nodes of G into two components.

A. Algorithm Description

TESLA includes the following three phases: 1) Virtual Node

(VN) Augmentation, 2) Computation Link (CL) Connection,

and 3) Minimum Cut (MC) Construction. VN Augmentation

makes a clone of the model DAG in the auxiliary graph and

adds computation nodes, virtual nodes, and weighted virtual

links. CL Connection adds weighted computation links in the

auxiliary graph. Finally, MC Construction finds a set of links

with the minimum weight to partition the nodes in the auxiliary

graph into two components and admits the optimal solution.

1) Virtual Node (VN) Augmentation: Based on the model

DAG G = {V,E}, VN Augmentation starts to construct the

undirected auxiliary graph G = {V, E}. For each node v ∈ V ,

VN Augmentation creates a clone node v into the auxiliary

G. Then, for each node v in G with only one out-degree link
⇀vw ∈ δ+(v), it connects the two clone nodes v, w in G with an

undirected link with a weight of the transmission time tt(v).
For each node v in G with more than one out-degree links

(i.e., |δ+(v)| ≥ 2), it creates a virtual node v′ into G. Then, it

a) connects v′ and v via an undirected link with a weight of

the total transmission time tt(v), and

b) connects v′ and each out-degree neighboring node w in G
via an undirected link with an infinite weight.

Lastly, VN Augmentation creates two computation nodes u, s
into G to represent users devices and edge server, respectively.

Example 2. Fig. 6(b) follows Example 1 to demonstrate VN

Augmentation. It adds an undirected link in E for each v ∈ V
with δ+(v2) = 1, e.g., v2v4. Then, it creates v′1 for v1 and then

adds links v′1v1, v′1v2, and v′1v3 with weights tt(v1), ∞, and

∞, since δ+(v1) = 2. Finally, nodes u and s are created. �

2) Computation Link (CL) Connection: For each node v in

the model DAG G, CL Connection connects its corresponding

node v in G to the computation nodes u, s via an undirected

link e in E with a weight c(e) of the computation time of the

corresponding layer executed on the other party. That is,

c(e) =

ts(v), if e = vu and v /∈ {i, o};

tu(v), else if e = vs and v /∈ L;

∞, otherwise.

(6)

It can be envisaged that the computation link from node v
to node u (or s) indicates that the layer is executed on the

user devices (or edge server). Recall that the first and the last

layers are executed on user devices for data privacy, whereas

the second-last layer(s) (i.e., L) are executed on the edge server.

Therefore, CL Connection sets the weight of the computation

link between the layer’s node and its desired computation node

to infinite to avoid assigning the layer to the inappropriate party.

Example 3. Fig. 6(b) follows Example 2 to show CL Connec-

tion. It connects u and s with V . Links between u and each

node in G are generated, namely, uv1, uv2, uv3, uv4, uv5, uv6,

and uv7, and have weights ∞, 23, 5, 13, 3, 14, and ∞. The

links between s and each node in V follows up while their

weights are set to 4.4, 4.6, 1, 2.6, 0.6, ∞, and 1.6. �

3) MC Construction: MC Construction employs the existing

minimum cut algorithm (e.g., Stoer–Wagner algorithm [17])

to find a set of links to partition the nodes in G into two

components by setting nodes u and s as the source and sink.

The layers executed on user devices and edge server will

be in the component of u and s, respectively. Also, the cut

transmission links indicates the data transmission will occur

between user devices and edge server for these layers.

n

(a) User Num. vs Training Time

ps

(b) GPU Num. vs Training Time

pu

(c) UD CPU vs Training Time

r

(d) Trans Cap. vs Training Time

Fig. 7. Effect of different parameters on different metrics. (ResNet152-V2)

Example 4. Fig. 6(b) follows Example 3 to find the minimum

cut (i.e., the red curve in Fig. 6(b)) by MC Construction. The

cut links are v1s, v2s, v3s, v4s, v4v5, uv5, uv6, v6v7, and

v7s. That is, only layers v5 and v6 are executed on the edge

server. The required computation and transmission time are

4.4+4.6+1+2.6+1.6+3+14 = 31.2 and 5.2+2.6 = 7.8,

yielding 39 in total. �

B. Theoretical Analysis

Time Complexity. The overall time complexity is O(|E| +
|V | log |V |). The details are omitted due to page limit. �

Theorem 1. TESLA yields the optimal solution of TENSOR.

Proof. We first prove that the auxiliary graph G constructed

by VN Augmentation and CL Connection ensures that the

corresponding node v of each layer is connected to either

computation node u or s by link vu or vs in G after the set of

cut links removed in MC Construction. That is, each layer is

assigned to either user devices or edge server. We prove it by

contradiction. Assume that there is a node v ∈ G such that two

links vu and vs are either in the set of cut links or not in that

set. Clearly, the latter case leads to a contradiction immediately

since u and s are still connected via v in this case. It suffices

to consider that both vu and vs are in the cut. Without loss of

generality, assume that u and v are not connected in G after

the cut links are removed. In this case, link vs can be removed

from the set of cut links and there is still no path connecting

s and u. That leads to another contradiction and the above

statement holds. Then, the minimum cut constructed in MC

Construction counts all link weights of any two neighboring

nodes in G that are assigned to different components. The total

weight of the selected of links in MC Construction is equal to

the sum of computation and transmission time (i.e., training

time) and it is guaranteed to be the minimum total weight.

Therefore, the theorem follows.

V. PERFORMANCE EVALUATION

A. Simulation Setting

TESLA is compared with baseline UnCut and traditional

approaches BackCut and MinCut in a network where n user

n

(a) User Num. vs Training Time

ps

(b) GPU Num. vs Training Time

pu

(c) UD CPU vs Training Time

r

(d) Trans. Cap. vs Training Time

Fig. 8. Effect of different parameters on different metrics. (MobileNet-V2)

pu

(a) UD CPU vs Trans. Time

ps

(b) GPU Num. vs Trans. Time

Fig. 9. Effect of computation capability on transmission time. (ResNet152-V2)

devices and an edge server join in the CL for two models,

ResNet152-V2 [18] and MobileNet-V2 [19]. The computation

capability of a user device pu is set based on the benchmarks

of Snapdragon CPUs from s810 to s855, whereas that of the

edge server ps is set based on the number of GTX1080Ti GPUs

available. The transmission capacity between a user device and

the edge server r ranges from 100 to 300 Mbps. The number

of user devices n ranges from 50 to 250. The above parameters

are changed to observe the metric of training time in an epoch.

B. Comp. and Trans. Time & Forward and Backward Prop.

Overall, the training time in an epoch decreases as pu, ps,

and r increase while increasing as n is getting more as shown

in Figs. 7 and 8. BackCut performs similar to UnCut and has

the longest training time since it only assigns the second-last

layer(s) to the edge server so that user devices handle most

computation. In contrast, MinCut aims to minimize the trans-

mission time (see Fig. 9) so that it benefits from the powerful

edge server and has shorter transmission time. Note that UnCut

does not employ the edge server and thus has no transmission

time but is under the threat of GAN attack. Instead, TESLA

takes computation and transmission time trade-off and forward

and backward propagation interplay into account at the same

time and carefully examines the relation among pu, ps, r, and

n to obtain the optimal solution.

C. Relation between Trans. Time and Comp. Capability

Fig. 9 also manifests the non-trivial results that the transmis-

sion time decreases and increases as the computation capabil-

ities of user devices and edge server strengthen, respectively.

These phenomena have a lot to do with the architecture of CNN

models that usually have more data propagated in front layers

since the front convolutional layers extract the features from

raw data (e.g., images). Then, as the computation capability of

a user device grows, TESLA tends to assign more layers to user

devices, which lowers the data size for transmission. Similarly,

as the computation capability of edge server grows, more layers

are assigned to the edge server to raise the transmission time.

VI. CONCLUSIONS

In this paper, we examine the effect of model partitioning

on GAN attacks. To tackle uncertain effect of layer concealing,

we present a novel model partition defense system PAMPAS.

To jointly balance computation and transmission time trade-

off and address forward and backward propagation interplay,

an optimization problem, TENSOR is investigated in depth. We

propose an efficient algorithm TESLA to subtly augment graph

and assign link weights so as to find an appropriate cut on a

given model to optimize training time, including computation

and transmission time of layers. Extensive experiment and

simulation results manifest that PAMPAS is effective to defend

GAN attacks and TESLA can further reduce 50% of training

time compared with the variants of traditional algorithms.

REFERENCES

[1] B. Hitaj, G. Ateniese, and F. Pérez-Cruz, “Deep models under the GAN:
information leakage from collaborative deep learning,” in ACM CCS,
2017.

[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[3] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to byzantine-robust federated learning,” in USENIX Security, 2020.

[4] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for
formalizing model-inversion attacks,” in IEEE CSF, 2016.

[5] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in ACM CCS,
2015.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE SP, 2017.

[7] U. Aı̈vodji, S. Gambs, and T. Ther, “Gamin: An adversarial approach to
black-box model inversion,” AAAI Workshop on PPAI, 2020.

[8] C. Dwork, “Differential privacy,” in ICALP, 2006.
[9] L. Zhao, Q. Wang, Q. Zou, Y. Zhang, and Y. Chen, “Privacy-preserving

collaborative deep learning with unreliable participants,” IEEE Trans. Inf.
Forensics Security, vol. 15, pp. 1486–1500, 2019.

[10] L. Jiang, X. Lou, R. Tan, and J. Zhao, “Differentially private collaborative
learning for the iot edge,” in EWSN, 2019.

[11] J.-I. Chang, J.-J. Kuo, C.-H. Lin, W.-T. Chen, and J.-P. Sheu, “Ultra-
low-latency distributed deep neural network over hierarchical mobile
networks,” in IEEE GLOBECOM, 2019.

[12] C.-C. Hsu, C.-K. Yang, J.-J. Kuo, W.-T. Chen, and J.-P. Sheu, “Cooper-
ative convolutional neural network deployment over mobile networks,”
in IEEE ICC, 2020.

[13] K. Zhang, Y. Liu, J. Liu, M. Liu, and T. Başar, “Distributed learning of
average belief over networks using sequential observations,” Automatica,
vol. 115, p. 108857, 2020.

[14] Y. LeCun and C. Cortes. ”MNIST handwritten digit database”. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[15] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model
for human face identification,” in IEEE WACV, 1994.

[16] S. Lee, A. Agrawal, P. Balaprakash, A. Choudhary, and W.-K. Liao,
“Communication-efficient parallelization strategy for deep convolutional
neural network training,” in ACM/IEEE SC Workshop on MLHPC, 2018.

[17] M. Stoer and F. Wagner, “A simple min-cut algorithm,” J. ACM, vol. 44,
p. 585–591, 1997.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[19] M. Sandler et al., “MobileNetV2: Inverted residuals and linear bottle-
necks,” in IEEE CVPR, 2018.

