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Abstract—Data privacy preservation has drawn much attention
in emerging machine learning applications. Decentralized learning
is thus developed to guarantee data security and get rid of the
involvement of parameter server to avoid transmission bottleneck.
However, the previous research focuses on data compression and
exchange rules of model parameters among smart devices but
neglects the interplay between link cardinality and transmission
power consumption. To jointly optimize these issues, in this paper,
we first formulate a new optimization problem, named GreenDL,
prove its hardness, and then propose an approximation algorithm
termed CoTRAIN. Experiment and simulation results manifest
that CoTRAIN reduces more than 20% power compared with
traditional methods without sacrificing the convergence rate.

I. INTRODUCTION

Nowadays, artificial intelligence (AI) has drawn much at-

tention and innovates numerous advanced applications [1].

However, AI models usually require considerable amount of

data for training, thereby giving rise to two following issues.

One is data security and privacy. The data required for training

are usually stored in smart devices of users [2]. The leakage

of data associated with personal information is thus the last

thing that users would like to encounter when enjoying AI-

related services [2]. Another is the need of powerful platforms

for training. To collect and process enormous amount of data

from smart devices in a centralized fashion, powerful servers

meeting requirements of storage, computing, and bandwidth

for emerging service providers are getting more and more im-

practical when the number of smart devices grows drastically.1

To ease the above issues, collaborative learning has been

proposed to train a target model by multiple smart devices of

users with their local data [1], [4], [5]. Usually, a centralized

server is required to aggregate different local updates of model

parameters from the smart devices for the next round of

training, whereas it may become a crucial network bottleneck

and limit the scalability [6]. To this end, decentralized learning

(DL) further removes the central server. Thus, each smart

device only shares local updates of model parameters with

its neighboring smart devices in the mobile edge network via

device-to-device (D2D) transmission [7] to locally derive new

average model parameters for the next round of training in

DL. Remark that messages here are forwarded to neighboring

devices by one-hop broadcasting to improve the transmission

efficiency and reduce the number of transmissions.2 It can be

envisaged that smart devices act as both a central parameter

server and a training unit at the same time. Eventually, DL
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Fig. 1. Effect of different number of links on DL in a network with 15 devices.

will converge and achieve consensus among the smart devices.

DL has two main advantages as follows: 1) It guarantees data

privacy since data are only accessed by their owners. 2) The

central server for parameter aggregation is no longer required.

Intuitively, a network with more links has more data ex-

changes and is more likely to yield better training performance

(e.g., higher accuracy and fewer training rounds for conver-

gence) for DL. To further verify the interplay between link

cardinality (i.e., number of links) and training performance, we

implement a DL framework [4] on a small network with 15

smart devices.3 The effects of different link cardinality on the

accuracy and loss are shown in Fig. 1, where the two tested

networks have 105 and 15 links, respectively. The accuracy

rates of 105-link and 15-link networks respectively achieve

70% at the 37th and 104th rounds while 75% at the 65th and

282th rounds, and eventually converge to 81.1% and 79.1%.

The above results show that more links in a network benefit the

training performance of DL. To increase the link cardinality in

a network, devices are inevitable to use higher transmission

power to make more one-hop neighbors and then incur higher

energy consumption during a round, whereas energy-efficient

communications are crucial for smart devices [10]. However,

the trade-off between training performance and transmission

power consumption has not been carefully explored for DL to

select adequate and energy-efficient links in networks.

Optimizing transmission power consumption while ensuring

link cardinality in the network for DL to guarantee training

performance leads to new challenges as follows: 1) Discrete

power levels. Devices have to set a higher transmission power

to cover farther devices. Nonetheless, smart devices are usually

unable to support configurations over a continuous domain

but have a limited, discrete set of possible transmission power

levels [11]. A smart device may seriously waste transmission

power if covering inappropriate devices whose locations are

slightly beyond the coverage of its previous transmission power

level. 2) Symmetric wireless links. Raising the transmission

power level of only one smart device may not connect the

device to the other devices. Two devices have to set a sufficient

3The detailed implementation and setting are described in Section IV.



power level to cover each other in the transmission range. In ad-

dition, the network with the selected links should be connected.

3) Density-aware power selection. Connecting devices close

to each other tends to reduce the overall transmission power.

Moreover, the devices in denser areas using high transmission

power levels are inclined to have more links than those in

sparser areas. Overall, the problem is quite challenging since it

has to jointly decide which links should be selected to achieve

the required link cardinality to ensure the training performance

and which transmission power level should be used for each

device to minimize the transmission power consumption.
To address the challenges, we present Green Transmission

Power Level Allocation Problem for Decentralized Learning

(GreenDL). With the given parameters: 1) the smart devices

in the network, 2) the required transmission power level to

connect each device pair, and 3) a link cardinality ratio (i.e., a

user-defined ratio of requested link cardinality to total number

of possible device pairs), GreenDL asks for a set of links that

satisfies the link cardinality ratio and yields the minimum over-

all transmission power consumption of devices. Then, we prove

that GreenDL is NP-hard and design an efficient Collaborative

Density-Aware Power Level Allocation and Link Selection

Approximation Algorithm (CoTRAIN). To jointly address the

above three challenges, CoTRAIN introduces a novel notion,

niche link set, that is, a set of links which connect the devices

that are close to each other in a dense area such that the links

have the lowest power consumption per link cardinality in the

network. Then, CoTRAIN introduces niche indicator (detailed

later) to evaluate sets of links and recognize the niche link

set in the network. Therefore, CoTRAIN iteratively augments

the set of selected links with the niche link set until the link

cardinality ratio is satisfied. Experiment and simulation results

manifest that CoTRAIN outperforms naive approaches by 20%.

II. THE GREENDL PROBLEM

This paper considers a mobile edge network that consists of

1) a set V of smart devices that are able to use device-to-device

(D2D) communication, 2) a limited, discrete set of possible

transmission power levels P , and 3) a set E of all possible

links between devices in V , where each possible link e ∈ E
has a minimum transmission power level c(e).4 GreenDL is

formulated as an integer linear programming (ILP) as follows.
Recall that the training performance can be guaranteed by

selecting an adequate number of links. Let ϕ ∈ [0, 1] denote a

user-defined lower bound for selected links to bound the link

cardinality (i.e., link cardinality ratio), and binary variable ye
denote whether link e ∈ E is selected. To ensure the training

performance, we require an adequate number of links, i.e.,
∑

e∈E

ye ≥ ϕ|E|. (1)

Let binary variable xvp denote whether device v ∈ V sets the

transmission power level power as p ∈ P . Each device can

only choose a configuration for transmission power, and then
∑

p∈P

xvp = 1, ∀v ∈ V. (2)

4To explore the intrinsic property of GreenDL, both two end devices u and
v are assumed to set the same transmission power level, which is no less than
the minimum transmission power level c(e), for communications in this paper.

Let V (e) denote the two corresponding devices incident to link

e. Both devices of a possible link e have to choose a transmis-

sion power level no less than the minimum transmission power

c(e) to cover each other in the transmission range. Thus,

ye ≤
∑

p∈P :p≥c(e)

xvp, ∀e ∈ E, ∀v ∈ V (e). (3)

Then, the induced graph by the selected links should be

connected, leading to the following flow-based constraints.

Note that r is an arbitrary device selected from V and every

device d ∈ V \ {r} should have a path from r in the induced

graph to ensure the network connectivity. Let binary variable

zduv denote whether the flow is steered along the link from u
to v to build a path from r to d, where u, v ∈ V . Therefore,

∑

u∈V

zdru −
∑

u∈V

zdur = 1, ∀d ∈ V \ {r}. (4a)

∑

u∈V

zddu −
∑

u∈V

zdud = −1, ∀d ∈ V \ {r}. (4b)

∑

u∈V

zdvu −
∑

u∈V

zduv = 0, ∀v, d ∈ V \ {r}, v 6= d. (4c)

Lastly, combined with the above flow-based constraints, the last

constraint in the following ensures that the network induced by

the selected links is connected.

ye ≥ zduv, ∀e ∈ E, ∀u, v ∈ V (e), u 6= v, ∀d ∈ V \ {r}. (5)

Definition 1. Given a complete network G = (V,E), the

minimum transmission power level c(e) of each possible pair

e ∈ E, and a link cardinality ratio ϕ, the Green Transmission

Power Level Allocation Problem for Decentralized Learning

(GreenDL) asks for a set of links ⊆ E and the transmission

power level for each device v ∈ V to meet the constraints

(1)−(5) while minimizing the total transmission power con-

sumption, i.e.,

min.
∑

v∈V

∑

p∈P

xvp · p (6)

Note that GreenDL has decision variables xvp, ye, and

zdu,v , and it is NP-hard since a NP-hard problem, Min-Power

Symmetric Connectivity problem [12], is its special case.

Example 1. The toy example shows the effect of different

link selection strategies for GreenDL. The given network G =
(V,E) associated with link information is depicted in Fig. 2(a)

and the transmission power levels of devices are summarized

in Table I. Two naive extensions of Kruskal’s algorithm termed

KR1 and KR2 can be applied to GreenDL. Assume that the link

cardinality ratio is 0.5, and thus five links should be selected.

KR1 iteratively selects the links with the lowest c(e) until the

number of selected links is satisfied. The selected links are

AB,CD,AE,BC,DE, and the total power consumption is

20 + 20 + 20 + 20 + 20 = 100. KR2 iteratively selects the

link that will increases the lowest extra power among all links.

It first selects AB,CD since their extra power is 1 + 1 = 2.

Then, it selects BC since the extra power is (20−1)×2 = 38.

Similarly, AD,AE are selected and the power consumption

is also 100. By contrast, CoTRAIN (detailed in Section III)

selects links AB,AD,AE,CD,DE and achieves the optimal



TABLE I
POWER LEVELS FOR EXAMPLE OF GREENDL

Power Level 1 2 3 4 5

Transmission Power 1 20 40 60 80
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(a) Given network for Example 1.
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(b) Selected links in Example 2.
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(c) Constructed MST in Example 3.
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(d) Removed links in Example 4.

Fig. 2. Example of GreenDL to demonstrate CoTRAIN. (a) The number next
to each link indicates the minimum transmission power required to connect
the two devices. The power required for BE is 18, whereas the power level
2 is 20 (see Table I). Thereby, B,E must set power mode to level 2 if BE is
selected. (b) The link sets L1 and L2 chosen by NL Selection are in the solid
and dashed lines based on the optimal fractional solutions at the 1st and 2nd

iterations, respectively. (c) The links of T selected by NC Provision are in the
solid lines. (d) The number in a box next to each device is the transmission
power level of that device in the solution output by RL Deletion.

power consumption 20 + 1 + 1 + 20 + 20 = 62. Therefore,

CoTRAIN can reduce the cost by 38% in this example. �

III. ALGORITHM DESIGN

Two naive extensions from the well-known approaches for

the minimum spanning tree (MST) problem can be applied

to solve GreenDL. They respectively follow the ideas behind

Kruskal’s algorithms, termed KR1 and KR2. KR1 iteratively

selects the unselected link e with the lowest c(e) among all

links until the link cardinality ratio is satisfied. Different from

KR1, KR2 iteratively selects the unselected link that will

increase the lowest extra power consumption among all links

instead. Note that both avoid selecting links that will generate

cycles in the solution until a MST forms to ensure the network

connectivity first. However, both neglect the interplay among

the three challenges described in Section I such that most links

selected in their solutions are rarely in dense areas, and thus

may waste power to cover a few links.

To efficiently solve GreenDL, we design an approximation

algorithm named CoTRAIN to carefully address the above

challenges. Instead of selecting a single link with the lowest

minimum transmission power level for each time, CoTRAIN

takes a forward view to select multiple links that have the lowest

power consumption per link cardinality (i.e., niche link set).

In this way, CoTRAIN can avoid excessively increasing the

transmission power of devices in sparse areas and significantly

reduce the transmission power. It introduces niche indicator to

evaluate link sets and iteratively find the niche link set (or a

close one) to augment the links until the link cardinality ratio

is met, and then imposes a MST for the network connectivity.

Finally, it removes the redundant links to save more energy.

Specifically, let Et be the unselected links in E after link

selection of the tth iteration and E0 = E, initially. Finding

the niche link set in the network {V,Et−1} at the tth iteration

is equal to solving the following integer programming (IP),

where variables (xt, yt) are akin to (x, y) in Definition 1.

min.

∑
v∈V

∑
p∈P xt

vp · p∑
e∈Et−1

yte
(7a)

s.t. yte ≤
∑

p∈P :p≥c(e)

xt
vp, ∀e ∈ Et−1, ∀v ∈ V (e) (7b)

∑

e∈Et−1

yte ≥ 1 (7c)

xt
vp, y

t
e ∈ {0, 1}, ∀v ∈ V, ∀p ∈ P, ∀e ∈ Et−1 (7d)

However, the above IP is still non-trivial. To this end, Co-

TRAIN subtly 1) relaxes the integral restriction xt
vp, y

t
e ∈

{0, 1} to xt
vp, y

t
e ≥ 0 and 2) scales

∑
e∈Et−1

yte ≥ 1 to∑
e∈Et−1

yte = 1 to get a linear programming (LP) as follows.

min.
∑

v∈V

∑

p∈P

xt
vp · p (8a)

s.t. yte ≤
∑

p∈P :p≥c(e)

xt
vp, ∀e ∈ Et−1, ∀v ∈ V (e) (8b)

∑

e∈Et−1

yte = 1 (8c)

xt
vp, y

t
e ≥ 0, ∀v ∈ V, ∀p ∈ P, ∀e ∈ Et−1 (8d)

In this way, the fractional optimal solution (xt, yt) can be

acquired by a polynomial-time LP solver (e.g., Gurobi), and

CoTRAIN can find a near-optimal niche link set (i.e., close to

the niche link set) based on the clue given by (xt, yt).
To acquire the near-optimal niche link set, CoTRAIN con-

structs multiple candidate niche link sets in each iteration and

chooses the one with the largest niche indicator. Specifically,

at the tth iteration, CoTRAIN constructs Nt candidate niche

link sets, Ct0, Ct1, ..., CtNt−1, and the ith candidate is

Cti = {e ∈ Et−1| 0.5
(i+1) < yte ≤ 0.5i}, (9)

where Nt = 2⌈log |Et−1|⌉ − 1 and 0 ≤ i ≤ Nt − 1. Then, the

niche indicator of each niche link set Cti is defined as

I(Cti ) = |C
t
i | −

2i

Nt + 1
. (10)

Later we show that the niche link set and niche indicator are the

cornerstones of CoTRAIN to ensure the approximation ratio.

A. Algorithm Description

CoTRAIN includes the following three phases: 1) Niche

Link Selection (NL Selection), 2) Network Connectivity Pro-

vision (NC Provision), and 3) Redundant Link Deletion (RL

Deletion). Particularly, NL Selection first iteratively constructs

multiple candidate niche link sets, chooses the best set among

them, and adds the links of the chosen set into the selected links

until the link cardinality ratio is satisfied. NC Provision then

imposes a MST to connect all devices to guarantee network



connectivity. Finally, RL Deletion eliminates redundant links

to reduce total power consumption. To achieve the approxi-

mation ratio, it is important for NL Selection to evaluate the

constructed candidate niche link sets by niche indicator to find

the near-optimal niche link set.

1) Niche Link Selection (NL Selection): NL Selection iter-

atively finds the near-optimal niche link set and adds the links

of the set to the selected links until the link cardinality ratio

is satisfied. Recall that Et is the unselected link set in E after

link selection of the tth iteration and E0 = E, initially. For

the tth iteration, NL Selection obtains the optimal fractional

solution (xt, yt) of LP (8) with the network5 {V,Et−1} by

any existing LP solver (e.g., Gurobi). Then, it constructs Nt

candidate niche link sets according to eq. (9) and chooses the

set with the largest niche indicator (see eq. (10)) among the Nt

candidate sets, where Nt = 2⌈log |Et−1|⌉ − 1. The candidate

niche link set chosen in the tth iteration can be written as

Lt = argmax
Ct
i
:0≤i≤Nt−1

I(Cti ). (11)

Afterward, NL Selection adds the links in Lt into the selected

links, and then employs the sub-network with {V,Et}, where

Et ← Et−1 \ Lt, for the next iteration (i.e., the (t + 1)th

iteration) to compute the optimal fractional solution of LP (8)

and Lt+1. NL Selection repeats link selection until the number

of selected links is at least (1− ǫ)ϕ|E|, where ǫ is a positive

tunable parameter to limit the loss percentage of requested link

cardinality. Now, the link set selected by NL Selection is L =⋃k
t=1 Lt, where k is the number of executed iterations.

Example 2. Following Example 1, NL Selection is shown in

Fig. 2(b), where ǫ = 0.1 and (1− ǫ)ϕ|E| = 4.5. The non-zero

variables in the solution of LP (8) are y1
AB

= y1
CD

= 0.5 in

the 1st iteration. Thus, C11 = {AB,CD} is chosen as the L1

since the two links satisfy 0.5(1+1) < yte ≤ 0.51 based on eqs.

(9) and (11), and E1 = E \ {AB,CD}. Remark that C10 =
C12 = C13 = ... = C1N1−1 = ∅. Then, the non-zero variables

in the solution of LP (8) are y2
AD

= y2
AE

= y2
BC

= y2
BE

=

y2
DE

= 0.2 in the 2nd iteration. Thus, AD,AE,BC,BE,DE
are included in C22 and chosen as L2. Lastly, since |L| = |L1∪
L2| = 7 ≥ (1− ǫ)ϕ|E| = 4.5, NL Selection stops. �

2) Network Connectivity Provision (NC Provision): NC

Provision employs Kruskal’s algorithm to get a MST T of

the network G to ensure the network connectivity. To precisely

calculate the power consumption, each link e is associated with

a new cost p(e) = minp∈P :p≥c(e) p for computing T . After NC

Provision, the selected link set becomes (E ∩ T ) ∪ L.

Example 3. Following Example 2, Fig. 2(c) shows the MST

T built by NC Provision. It has AB, BC, CD, and AE. Thus,

the selected links are AB,AD,AE,BC,BE,CD,DE. �

3) Redundant Link Deletion (RL Deletion): The final phase

eliminates redundant links so as to further decrease the power

consumption. Let E and P(E) denote the current selected

links (i.e., E ← (E ∩ T ) ∪ L) and its transmission power

5Note that when the number of unselected links is smaller than nine, i.e.,
|Et−1| < 9, NL Selection can compute the optimal niche link set since it only
has to examine at most 28 = 256 possibilities, which takes a small constant
time. Therefore, it suffices to deal with the cases where |Et−1| ≥ 9.

consumption. Since each device in the network should have an

adequate transmission power level,

P(E) =
∑

v∈V

max
e∈E(v)∩E

p(e), where p(e) = min
p∈P :p≥c(e)

p, (12)

and E(v) denotes the selected links incident to device v ∈
V . RL Deletion iteratively removes the link e, the removal of

which saves the most power until |E| ≤ ϕ|E|, i.e.,

e = argmax
e∈E

P(E)− P(E \ {e}). (13)

However, to keep the network connectivity, RL Deletion

doesn’t remove link e if removing e splits the induced network.

Example 4. Following Example 3, BC,BE in Fig. 2(d) will

be removed by RL Deletion since removing them can achieve

the greatest power saving while keeping the network connectiv-

ity. The power consumption was 20+20+20+20+20 = 100
and can be reduced to 20 + 1 + 1 + 20 + 20 = 62. �

B. Theoretical Analysis

Time Complexity. The complexity is dominated by NL Selec-

tion. Let TLP denote the complexity of solving LP (8), which

is clearly in polynomial time. Since NL Selection selects at

most |E| links, the overall time complexity is O(TLP |E|). The

details are omitted due to the page limit. �

Theorem 1. CoTRAIN is a (O(log |E|(ln 1
ǫ
+ 1−ϕ

ǫϕ
)), 1− ǫ)-

approximation algorithm, where ǫ is a positive tunable param-

eter to limit the loss percentage of requested link cardinality.

Proof. We sequentially prove that 1) at the tth iteration of

NL Selection, the chosen near-optimal niche link set Lt has

the power consumption per link cardinality P(Lt)/|Lt| less

than ⌈log |Et−1|⌉ · P(L∗
t )/|L

∗
t |, where L∗

t denotes the optimal

niche link set at the tth iteration, i.e., the optimal solution of

IP (7), 2) NL Selection outputs a set of links L with the power

consumption P(L) < ⌈log |E|⌉(1+ln 1
ǫ
+ 1−ϕ

ǫϕ
)P(OPT ) while

ensuring |L| ≥ (1−ǫ)ϕ|E|, where OPT is the optimal solution

of GreenDL, and 3) the power consumption of MST by NC

Provision is P(T ) ≤ 2 · P(OPT ). Finally, we will prove the

theorem with the three above statements.
For the 1st statement, we respectively prove the two cases

when |Et−1| ≥ 9 and |Et−1| < 9. For |Et−1| ≥ 9, we first

prove that the niche indicator of chosen candidate niche link

set Lt is at least zero and then the 1st statement. Since in the

optimal fractional solution of LP (8), the variable yte of each

link e that is not in any constructed candidate niche link set

must be at most 0.5Nt , where Nt = 2⌈log |Et−1|⌉ − 1. Then,

∑

e∈Et−1\
⋃

i∈[0,Nt−1] C
t
i

yte ≤ |Et−1| · 0.5
Nt <

1

Nt + 1
. (14)

The last inequality explicitly holds when |Et−1| ≥ 9. Thereby,

there exists some index ĵ ∈ [0,Nt− 1] such that the candidate

niche link set Ct
ĵ

has
∑

e∈Ct

ĵ

yte ≥
1

Nt+1 because the number

of candidate niche link sets is Nt and
∑

e∈Et−1
yte = 1 due to

constraint (8c). Also, yte ≤ 0.5ĵ for each e ∈ Ct
ĵ

implies that

I(Ct
ĵ
) = |Ct

ĵ
| −

2ĵ

Nt + 1
≥ 2ĵ

∑

e∈Ct

ĵ

yte −
2ĵ

Nt + 1
≥ 0. (15)



Thus, I(Lt) ≥ I(Ctĵ) ≥ 0 due to eq. (11). Let î be the index

of Lt, i.e., Lt = Ct
î
, and recall that p(e) = minp∈P :p≥c(e) p.

With yte > 0.5î+1 for each e ∈ Ct
î

and constraint (8b),

P(Lt) = P(C
t
î
) =

∑

v∈V

max
e∈E(v)∩Ct

î

p(e)

< 2î+1
∑

v∈V

max
e∈E(v)∩Ct

î

yte · p(e) ≤ 2î+1
∑

v∈V

∑

p∈P

xt
vp · p. (16)

Moreover, I(Ct
î
) ≥ 0 and I(Ct

î
) ≥ I(Ct

ĵ
). Thus,

|Lt| = |C
t
î
| ≥

2î

Nt + 1
=

2î

Nt + 1

∑

e∈Et−1

yte. (17)

Note that the solution value of LP (8) is no greater than that

of IP (7) due to LP relaxation. Hence, by eqs. (16) and (17),

P(Lt)

|Lt|
=
P(Ct

î
)

|Ct
î
|

<
2î+1P(L∗

t )
2î

Nt+1 |L
∗
t |

= ⌈log |Et−1|⌉
P(L∗

t )

|L∗
t |

(18)

We have proved the case where |Et−1| ≥ 9. For |Et−1| < 9,

the instance is quite small such that CoTRAIN can enumerate

all possible solutions to obtain the optimal niche link set and

the time complexity can be regarded as a small constant time.

Thus, the following inequality always holds.

P(Lt)/|Lt| < ⌈log |Et−1|⌉ · P(L
∗
t )/|L

∗
t |. (19)

We then prove the 2nd statement. Suppose that NL Selection

stops at the kth iteration, and let nt denote the number of

links that remains to be covered after tth iteration. Since NL

Selection stops in the kth iteration,
∑k−1

t=1 |Lt| < (1− ǫ)ϕ|E|.
Then, we have

n0 = ϕ|E|, and nk−1 = ϕ|E| −
k−1∑

t=1

|Lt| > ǫϕ|E|. (20)

Let OPTt denote the optimal solution at the tth iteration of NL

Selection to meet link cardinality ratio. Since L∗
t is the optimal

niche link set, P(L∗
t )/|L

∗
t | ≤ P(OPTt)/nt−1. Moreover, by

combining with eq. (19), we have

P(Lt)

nt−1 − nt

=
P(Lt)

|Lt|
< ⌈log |Et−1|⌉

P(OPTt)

nt−1
. (21)

Remark that P(OPTt) ≤ P(OPT ) and |Et−1| ≤ |E| for each

t ∈ [1, k − 1]. By combining eq. (21) with eq. (20),

k−1∑

t=1

P(Lt) ≤
k−1∑

t=1

[(⌈log |Et−1|⌉ ·
nt−1 − nt

nt−1
) · P(OPTt)]

≤ ⌈log |E|⌉ · P(OPT )
k−1∑

t=1

(
nt−1 − nt

nt−1
)

≤ ⌈log |E|⌉ · P(OPT ) · ln (
n0

nk−1
)

< ⌈log |E|⌉ · P(OPT ) · ln (
1

ǫ
). (22)

We then turn to analyze the kth iteration. In the worst case,

Lk might cover all the links left, i.e., (1−ϕ)|E|+nk−1. Thus,

P(Lk)

(1− ϕ)|E|+ nk−1
≤
P(Lk)

|Lk|
≤ ⌈log |E|⌉ ·

P(OPT )

nk−1
. (23)

Combining eq. (23) with eq. (20),

P(Lk) < ⌈log |E|⌉(1 +
1− ϕ

ǫϕ
) · P(OPT ). (24)

Note that NL Selection stops when |E| ≥ (1 − ǫ)ϕ|E|. In

addition, P(E) =
∑k

t=1 P(Lt). By eq. (22) and (24), we have

P(L) < ⌈log |E|⌉(1 + ln
1

ǫ
+

1− ϕ

ǫϕ
) · P(OPT ). (25)

Last, we prove the 3rd statement. The power level of each

device v ∈ T is maxe∈E(v)∩T p(e). Also, OPT must contain

a spanning tree F (may not be the minimum one). Thus,

P(T ) =
∑

v∈T

max
e∈E(v)∩T

p(e) ≤ 2
∑

e∈T

p(e) ≤ 2
∑

e∈F

p(e)

≤ 2
∑

v∈F

max
e∈E(v)∩F

p(e) ≤ 2P(F) ≤ 2P(OPT ). (26)

The inequalities hold since each link only connects two devices

and the total transmission power consumption of any spanning

tree is at least its total link cost. Combining eqs. (25) and (26),

CoTRAIN outputs the link set E after NC Provision.

P(E) < (2 + ⌈log |E|⌉(1 + ln
1

ǫ
+

1− ϕ

ǫϕ
)) · P(OPT ). (27)

Finally, the theorem follows since link deletion by RL Deletion

does not increase the power consumption and it stops once

|E| ≤ ϕ|E|, i.e., |E| is still at least (1− ǫ)ϕ|E|.

IV. PERFORMANCE EVALUATION

A. Experiment and Simulation Settings

Extensive simulations are conducted to compare CoTRAIN

with KR1, KR2, and the optimal solution OPT in a small (15

smart devices) and a median (105 smart devices) networks

extracted from the real network dataset of Santander City [13],

as well as large synthetic networks with n smart devices,

where n ∈ [100, 900]. Assume that only 5 transmission power

configurations are available for D2D communication, where the

minimum and maximum ones are 0.02 mW and 2.4 mW, and

the maximum link rage of D2D is 100 m. The other parameters

are referred to the settings in [14]. We alter the demand average

degree δ (i.e., average number of links per device) to observe

the metric of power consumption. For synthetic networks, we

also change n and the device density ρ (i.e., number of devices

per unit of area). The default values of n, δ, and ρ are 500
devices, 10 links/device, and 0.005 devices/m2, respectively.

To implement DL, we distribute 50000 images extracted

from CIFAR-10 dataset [15] evenly to 15 devices in a small real

network for training, and leave 10000 images for testing. The

input images for training are preprocessed according to [16].

Tensorflow and Keras are used to implement a convolutional

neural network (CNN), which has 2 convolutional layers (CL)

and 3 fully connected layers (FL). Both 2 CLs have 64 channels

and each layer is followed by a 3×3 max pooling with a stride

of 2 and normalization. The first 2 FLs have 384 and 192 units

(each of them with ReLu activation followed by 1 dropout), and

the last FL is the final softmax output layer with 10 units. The

learning rate, learning rate decay, number of local epochs, and

local minibatch size are set to 0.2, 0.99, 5, and 64, respectively.



(a) Small real network (b) Median real network

Fig. 3. Effect of different degree on power consumption.

(a) Num. of devices vs power cons. (b) Degree vs power cons.

(c) Density vs power cons. (d) CDF of device degree

Fig. 4. Effect of different parameters in large synthesis networks.

B. Discrete Power Levels and Symmetric Wireless Links

Overall, power consumption increases when δ and n go up

as shown in Figs. 3 and 4. KR1 selects the links with lowest

required power yet ignores discrete power levels and symmetric

wireless links. The selected links tends to be sparse and waste

much energy of devices to meet the power level for connecting

devices. KR2 selects the links with the lowest increase on

overall power consumption. Some devices may be forced to

use the maximum power level to cover links. In contrast, the

links of each candidate niche link set in CoTRAIN tend to be

energy-saving. Then, by niche indicator, CoTRAIN can choose

the set with more links to approximate the optimal solution.6

C. Effect of Density-aware Power Selection on Device Degree

Fig. 4(d) shows the distribution of device degree. KR1 tends

to select links uniformly in the network since it overlooks the

relation among links. More than 70% of devices have 5 ∼ 20
neighbors whereas those devices only account for 40% in KR2

and CoTRAIN. KR2 selects the links with lowest increase of

power consumption such that it has the most devices with more

than 30 selected links. When n is high, δ is low, or ρ is high,

KR2 outperforms KR1 since more links for selection highlight

the importance of relation among links as show in Figs. 4(a),

4(b), and 4(c). However, none of them can always generate

desired solutions. By contrast, CoTRAIN can always balance

the two factors to reduce the power consumption (see Table II)

without sacrificing the convergence rate as shown in Fig. 5.

6The optimal solution of GreenDL is obtained only for the small network
since it is NP-hard and the running time is exponential to the network size.

(a) Effect on accuracy (b) Effect on loss

Fig. 5. Convergence of different algorithms in small real network.

TABLE II
TRANSMISSION POWER CONSUMPTION IN SMALL REAL NETWORK (MW)

Accuracy 72% 75% 78% 81%

CoTRAIN 17.71 (1x) 25.52 (1x) 44.73 (1x) 127.28 (1x)
KR1 21.85 (1.23x) 32.77 (1.28x) 59.25 (1.32x) 189.92(1.49x)
KR2 19.90 (1.12x) 31.61 (1.24x) 54.63 (1.22x) 162.71 (1.28x)

V. CONCLUSIONS

This paper studies a new optimization problem, GreenDL, to

explore the trade-off between transmission power consumption

and training performance in depth. GreenDL is very intractable

due to the new challenges, i.e., discrete power levels, sym-

metric wireless links, and density-aware power selection. We

propose a novel algorithm CoTRAIN to subtly take a forward

view to selects link sets by exploiting insightful niche indicator

to assess link sets. Experiment and simulation results manifest

that CoTRAIN outperforms traditional approaches more than

20% without sacrificing the convergence rate. For future re-

search, it would be interesting to model the relation between

the convergence rate and number of links to save more energy.
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