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Abstract—Data privacy preservation has drawn much attention
with emerging machine learning applications. Federated Learning
is thus developed to offer decentralized learning on user devices.
However, it is difficult to jointly address multiple issues such as
device selection, upload scheduling, and payment minimization.
To jointly optimize the issues above, we first formulate a new
optimization problem, named TRAIN, to minimize the training
cost (including incentive payment and upload time) while ensuring
the data requirement. We then prove the NP-hardness and pro-
pose a 3-approximation algorithm, named DETECT to obtain a
near-optimal solution. Simulation results manifest that DETECT
reduces the training cost by 50% compared with other traditional
methods and achieves high accuracy and short convergence time.

Index Terms—federated learning, approximation algorithm,
mobile edge network

I. INTRODUCTION

Nowadays, the growing demands for Artificial Intelligence
(AI) have grabbed much attention. Many advanced applications
[1] enrich our daily life. However, due to the data-intensive
property, current AI models have two critical issues. One is
data security and privacy. Application service providers (ASPs)
require enormous personal data to train AI models while the
personal data is commonly stored in user devices [2]. Another
is the need of powerful platforms for AI model training. To
collect and process amount of data from devices, third-party
ASPs have to afford plentiful transmission, computation, and
storage resources. Nevertheless, most emerging ASPs cannot
afford much infrastructure expenditure.

To remedy the above issues, Federated Learning (FL) sheds
light on decentralized training framework [3]. The central
server selects a set of user devices, broadcasts the global model,
and each selected device trains the model with its local data
[4]. Then, when the local computing time is up,1 the central
server starts to retrieve the local parameters from the selected
devices to jointly update the parameters of global model in the
central server. Accordingly, FL has following advantages: 1)
Data privacy is secured by reserving data in the devices. 2) Data
and computations are distributed among numerous devices, that
is, the central server’s burden is lower. 3) More data involved
boost smarter services offered by third-party ASPs.

Intuitively, an appropriate amount of data and number of
devices usually bring better accuracy and rate of convergence
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1The devices train the model in parallel, and each device can adjust the

number of local updates within a round to mitigate synchronization delays in
waiting for straggling and slow devices [5]. In this way, the devices can have
similar local computing time. However, the upload time of each device depends
on its transmission rate, and thus the upload scheduling is inevitable to achieve
time-cost trade-off. Therefore, this paper focuses on upload scheduling.

of trained models. Over-selection may require a high incentive
payment, which is paid to users to have the aid of their comput-
ing and data, thereby including computing expenditure and data
expenditure [6]. Besides, the upload time for parameters via
networks from devices takes a large proportion of time [7]. The
devices with low transmission rates may prolong the upload
time, which is inevitable in mobile networks since devices
resources are heterogeneous and the transmission rate depends
on the relative location to the base station (BS) [8]. Also, a
BS can simultaneously receive data from multiple channels
while each device utilizes at most one channel at a time [9].
Nonetheless, the issues above are separately studied [10]–[12].

Jointly optimizing device selection and upload scheduling
to minimize relevant costs (i.e., incentive payment and upload
time) for updating a global model raises several new challenges
as follows. 1) Complicated upload time minimization. Existing
scheduling problems minimize the completion time for a set
of tasks. The proposed problem, though, is more challenging
since it not only schedules the uploadings of devices but
shorten the upload completion time by shunning the devices
with overlengh upload time. 2) Training cost trade-off. The
data quantity requirement should be met to achieve the desired
accuracy and convergence rate [13]. To reduce training cost,
ASPs have to balance incentive payment [14] and upload time
[15]. 3) Obscure training cost. It has to consider incentive
payment and upload time jointly to minimize the training cost.
Nevertheless, it is difficult to estimate the overall upload time
of the selected devices. The more selected devices do not
always lead to a longer overall upload time since they can
upload the local parameters in parallel via multiple channels.

To address the above challenges, we present a new opti-
mization problem, termed Time-Cost Trade-off for Federated
Learning via Smart Devices over Mobile Networks (TRAIN).
With the following given parameters: 1) data quantity of each
device, 2) incentive payment of each device (related to the
data stored in a device), 3) upload time of each device, and
4) number of channels of the BS, TRAIN finds a subset of
devices for training and schedules the upload sequence over
the channels to minimize training cost including: 1) incentive
payment and 2) upload time,2 while ensuring data quantity
requirement (i.e., the quantity of considered data should meet
the provider requirement). Then, we prove that TRAIN is
NP-hard and design a 3-approximation algorithm, Bid-Based
Time-Cost-Balanced Device Selection and Upload Scheduling
Algorithm (DETECT). To address complicated upload time
minimization, DETECT sets distinct limits to device upload

2Note that our method can efficiently reduce upload time within a round in
FL (i.e., the time for the devices to upload their local parameters to the central
server) without sacrificing the convergence and accuracy shown in Section VI.



time to generate different candidate solutions for avoiding
selecting devices with overlength upload time. Also, for each
candidate solution, it adopts an intelligent bidding process for
device selection to deal with training cost trade-off while meet-
ing data requirement. Finally, to tackle obscure training cost, it
introduces the notion of binal cost to estimate the upload time
with a bounded error since finding the optimal scheduling is
difficult. Simulation results based on the MNIST data manifest
that DETECT outperforms the traditional approaches by 100%
and reduce convergence time.

II. RELATED WORK

A. Decentralized Learning Framework Evolution and Anaysis
Smith et al. extend the decentralized framework to multiple

models according to the relations among multiple tasks [16].
Mohri et al. propose a new framework to mitigate the degra-
dation of performance due to skewed data distributions [12].
Zhao et al. analyze the performance of models trained with
non-skewed data and skewed data via FL and provide a data-
sharing method to remedy the performance downgrade [17].

B. Decentralized Training Efficiency Optimization
Konečnỳ et al. optimize transmission efficiency between

central servers and devices by reducing transmitted data sizes
[10]. The approach above ignores device selections. Nishio et
al. maximize the number of selected devices within a time
period for FL [4]. Although device selection is considered,
the optimization jointly examining device selection, upload
scheduling, and payment minimization has not been explored.

III. THE TRAIN PROBLEM AND ITS HARDNESS

To train a model with FL, this paper considers a mobile
edge network that consists of 1) a base station (BS) with a set
of orthogonal channels M and an edge server which acts as a
central server for FL and 2) a set of smart devices K with non-
identical transmission rates for transmitting the training results
to the central server. Once the local computing time is up,3 the
central server starts to take back the training results from the
selected devices, and thus K only includes the devices that can
finish the training before that time. Let t(i) denote the upload
time (length) of device i ∈ K calculated by its transmission
rate.4 However, the upload completion time (denoted by T )
cannot be acquired by summing up the upload time of all the
selected devices. Instead, T should be carefully determined by
scheduling the devices over |M | channels of the BS. TRAIN is
formulated as a mixed-integer linear programming as follows.

Let binary decision variable xi denote whether to select
device i ∈ K and binary decision variable zim denote whether
device i ∈ K uses channel m ∈ M . To ensure that a selected
device should use a channel to upload the local parameters, we
have the first constraint as follows.∑

m∈M
zim = xi, ∀i ∈ K. (1)

3The local computing time of each device is assumed to be similar by
adjusting the number of local updates [5]. Please refer to the footnote 1.

4The transmission rate can be derived by Shannon capacity [18]. Moreover,
to explore the intrinsic property of TRAIN, following [9], it is reasonable to
assume that each device has the similar transmission rate via different channels.

TABLE I
INITIAL VALUE

U1 U2 U3 U4 U5

t(i) 0.6 0.5 0.4 1.9 0.2
D(i) 440 350 300 550 250
c(i) 0.80 0.66 0.58 0.98 0.50

TABLE II
UPLOAD TIME GROUP

Group lh
G1 = {U5} 0.2
G2 = {U5,U3} 0.4
G3 = {U5,U3,U2} 0.5
G4 = {U5,U3,U2,U1} 0.6
G5 = {U5,U3,U2,U1,U4} 1.9

Let variable Tm denote the upload time sum of selected
devices via channel m ∈ M and T denote the overall upload
completion time of all selected devices (i.e., the time at which
all the selected devices finish uploading). Thus, we have5

Tm =
∑
i∈K

t(i) · zim, ∀m ∈M. (2)

T ≥ Tm, ∀m ∈M. (3)

The incentive payment C includes: 1) Computation expenditure
e(i) ∈ R+ representing the expenditure to request device i ∈ K
to train the global model with its local data and 2) Data
expenditure d(i) ∈ R+ denoting the expenditure to locally
access the data of device i ∈ K for training. Let c(i) denote the
expenditure sum of device i, i.e., c(i) = e(i)+d(i). Therefore,

C =
∑
i∈K

xi · c(i). (4)

To ensure the inference accuracy, the total amount of consid-
ered data must meet the data quantity requirement D, i.e.,∑

i∈K
xiD(i) ≥ D, (5)

where D(i) denotes the data amount device i ∈ K possesses.

Definition 1. Given a set of devices K, data quantity D(i),
data requirement D, upload time t(i), number of channels
|M |, expenditure d(i) and e(i), the Time-Cost Trade-off for
Federated Learning via Smart Devices over Mobile Networks
(TRAIN) finds a set of devices and schedules the uploadings of
them to meet the constraints (1), (2), and (5) while minimizing
the training cost including (3) and (4), i.e.,

minimize α · C + β · T , (6)

where parameters α, β ∈ R+ ∪ {0} are tuning knobs (please
refer to the simulation setting in Section VI) for ASPs to
differentiate the importance of incentive payment and upload
time. Remark that xi and zim are decision variables in TRAIN.

Example 1. The example shows how to select devices and
evaluate incentive payment and upload time for different meth-
ods, where K and M include five devices (i.e., U1, U2, U3,
U4 and U5) and two channels. Table I summarizes the given
values. Moreover, assume that α = β = 0.5, and the given
data requirement D = 800. Fig. 1 compares the solutions of
DETECT with two traditional approaches:6 Naive Federated

5The upload completion time T in (3) seems unbounded, whereas the
minimization of the objective (6) can limit T to be maxm∈M Tm. Moreover,
the objective (6) leaves us avoiding the devices with overlength upload time.

6Note that both the two traditional approaches only handle device selection,
but neglect upload scheduling. To make their solutions feasible, we employ the
existing algorithm for Parallel Machine Scheduling (PMS) [19] to complete
the upload scheduling to generate the solutions (see Figs. 1(a) and 1(b)).
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Fig. 1. Upload scheduling for selected devices

Learning (NFL) [3] and greedy-based client selection (GCS)
[19]. NFL randomly selects devices until D is satisfied (e.g.,
U2 and U4) where relevant incentive payment and upload time
are 0.98 + 0.66 = 1.64 and 1.9 (see Fig. 1(a)), respectively.
Therefore, the training cost is 0.5×1.64+0.5×1.9 = 1.77 for
NFL. By contrast, GCS iteratively selects the device with the
largest ratio7 of effective data quantity to incentive payment.
It first selects U4 with 550

0.98 and then selects U5 with 250
0.5 rather

than U1 with min{440,800−550}
0.8 . Incentive payment and upload

time are 0.98+0.5 = 1.48 and 1.9 (see Fig. 1(b)), respectively.
We have training cost of 0.5×1.48+0.5×1.9 = 1.69. Finally,
DETECT (detailed in Section IV) selects devices U2, U3 and
U5 (see Fig. 1(c)) and only requires the incentive payment
0.66 + 0.58 + 0.5 = 1.74 and upload time 0.6 (see Fig. 1(c)).
The training cost 0.5×1.74+0.5×0.6 = 1.17 is also optimal.
Compared with NFL and GCS, DETECT reduces training cost
by 34% and 31% with the upload time speedup of 3.16x. �

TRAIN is NP-hard since the NP-complete decision version
of Parallel Machine Scheduling Problem (D-PMS) [19] can
be reduced to the decision version of TRAIN (D-TRAIN)8 in
polynomial time. The proof is omitted due to the page limit.

IV. ALGORITHM DESIGN

Two traditional approaches can be applied to TRAIN. One is
the native Federated Learning algorithm (NFL) [3]. It randomly
selects devices until data requirement D is met to train the
global model. However, it can ensure neither minimum expen-
diture nor decent upload time. Another is a greedy-based client
selection approach (GCS) [19]. It iteratively selects device with
the largest ratio of effective data quantity to incentive payment
until D is met.7 Nonetheless, it neglects the upload time of
selected devices. To solve TRAIN, we design an approximation
algorithm named DETECT to carefully address training cost
trade-off, complicated upload time minimization, and obscure
training cost simultaneously. First, DETECT makes use of the
novel notion of binal cost to approximate the exact training
cost jointly including incentive payment and upload time.
Specifically, the binal cost of each device i is defined as

ĉ(i) = α · c(i) + β · ( t(i)
|M |

),

where t(i) is the upload time of device i, c(i), the expenditure
for selecting device i to train the global model (i.e., c(i) =
e(i) + d(i)), and |M |, the number of channels. The binal cost
can be acquired in constant time and approximate the exact

7Let K′ denote the current set of selected devices. Initially, K′ = ∅. GCS
iteratively selects the device with maxi∈K\K′

min{D(i),D−
∑

j∈K′ D(j)}
c(i)

.
8D-TRAIN asks whether a solution with a training cost less than a given

cost threshold q exists.

TABLE III
FIRST ITERATION
INITIALIZATION

U1 U2 U3 U5

ĉ(i) 0.55 0.45 0.39 0.30
sδ(i) 440 350 300 250
bi 0 0 0 0

TABLE IV
FIRST ITERATION BIDDING PROCESS

Device Bidding Process yδ(i)
U1 0 + 440× yδ(1) = 0.55 0.00125
U2 0 + 350× yδ(2) = 0.45 0.00128
U3 0 + 300× yδ(3) = 0.39 0.00130
U5 0 + 250× yδ(5) = 0.30 0.00120

training cost with a bounded error (detailed later). However, a
device with overlength upload time may still prolong upload
completion time. Thus, DETECT constructs multiple solutions
being considered in the end, and each solution has different
upload time limit. That is, a device with upload time larger
than the upload time limit cannot be selected into the solution.

Moreover, for each constructed solution, we design an intel-
ligent bidding process for the ASP to gradually grow the bid
to pay a fair cost. Explicitly, the bid offered by the ASP for
each device i grows simultaneously at different increase rate
denoted by sδ(i), which is defined as

sδ(i) = min{D(i),D −D(δ)}, (7)

where δ ⊆ K denotes the current set of selected devices with
data quantity D(δ) and thus initially δ = ∅ and D(δ) = 0.
Once a device’s bid increases to its binal cost, the device will
be selected in the solution. Meanwhile, the increase rate of bid
for each device will update according to the current selected
devices by eq. (7). The bidding repeats until the total data
quantity of selected devices meets the requirement D.

DETECT includes the following four phases: 1) Candidate
Devices (CD) Grouping, 2) Candidate Devices (CD) Gathering,
3) Candidate Devices (CD) Scheduling, and 4) Final Devices
(FS) Selection. More specifically, CD Grouping first establishes
multiple groups with different limits on upload time length and
puts the devices into groups according to their upload time
length for the later construction of candidate devices. For each
group, CD Gathering then exploits the bidding process to select
a set of suitable devices based on its binal cost until meeting
data requirement. Afterward, for each group, CD Scheduling
schedules the selected devices over the channels. FS Selection
eventually chooses a solution with minimum cost among all
the groups. To achieve the approximation ratio, it is important
for CD grouping and CD Gathering to carefully examine the
maximum upload time length and subtly exploit the binal cost
in bidding processes to select suitable devices.

1) Candidate Devices (CD) Grouping: Initially, CD Group-
ing identifies and sorts all the devices with distinct upload time
length in non-decreasing order. For each distinct upload time
length l in non-decreasing order, CD Grouping establishes a
group and puts every device whose upload time is no greater
than l into the group. Therefore, CD Grouping obtains at most
|K| groups G1,G2, ..., where the maximum upload time length
of devices in Gh is smaller than that in Gh+1. That is,

Gh = {i ∈ K|t(i) ≤ lh},

where lh denotes the upload time limit of group Gh. Thus,
the last group includes all the devices. Later, to generate
a candidate solution for each group Gh, only the devices
put in the same group can be selected. That is to say, CD



TABLE V
SECOND ITERATION

INITIALIZATION

U1 U2 U3

sδ(i) 440 350 300
bi 0.53 0.42 0.36

TABLE VI
SECOND ITERATION BIDDING PROCESS

Device Bidding Process yδ(i)
U1 0.53 + 440× yδ(1) = 0.55 0.00005
U2 0.42 + 350× yδ(2) = 0.45 0.00008
U3 0.36 + 300× yδ(3) = 0.39 0.00010

Grouping is designed to restrict the maximum upload time
length for each group. Clearly, let l∗ denote the maximum
upload time of devices selected in the optimal solution. Then
the optimal solution must only select the devices classified in
the corresponding group G∗ with the upload time restriction
l∗. To some extent, the solutions generated by later phases
for G∗ stand more chance to achieve complicated upload time
minimization since it avoids the devices with overlength upload
time, which are also ignored by the optimal solution. Lastly,
to avoid the redundant computing, CD Grouping deletes the
groups whose total data quantity is less than D.
Example 2. Table II follows Example 1 to illustrate an exam-
ple of CD Grouping where the devices are grouped by distinct
upload time length t(i) (i.e., the first row of Table I). We have
five groups in Table II, where lh is the maximal upload time
length in each group Gh. Remark that if the maximum upload
time length in the optimal solution is 0.5, all the selected
devices in the optimal solution must be in group G3. �

2) Candidate Devices (CD) Gathering: This phase develops
an intelligent bidding process for each group Gh. Initially, the
selected devices δ in the constructed solution Gth is ∅ (i.e., no
device selected). Each bid bi for device i ∈ Gh \ δ is initially
set to zero and then gradually grows at different increase rate
sδ(i) until the bid of some device iδ meets it’s binal cost, i.e.,

iδ = argmin
i∈Gh\δ

yδ(i), where yδ(i) =
ĉ(i)− bi
sδ(i)

. (8)

Note that yδ(·) is used to find the first-saturated device (i.e., the
device to be selected in this iteration) when the set of selected
devices is δ. Therefore, the increase unit of bid for all devices
not in δ is set to

yδ = min
i∈Gh\δ

yδ(i). (9)

The bid bi of each device i ∈ Gh\δ is updated to bi+sδ(i) ·yδ ,
and then device iδ is selected in the solution, i.e., δ = δ∪{iδ}.
The bidding repeats until the total data quantity meets the
requirement, i.e., D(δ) ≥ D. For each group Gh, CD Gathering
employs the bidding process to obtain the solution Gth. Remark
that the binal cost does not precisely capture the upload com-
pletion time. Instead, the binal cost is exploited to circumvent
the obscure training cost during the device selection. Therefore,
the next phase still has to schedule the device uploads for each
candidate solution to approximate the exact training cost.
Example 3. Table III follows Example 2 and shows the initial
variables for each device. Take group G4 as an example for
CD Gathering where four devices are available for selection.
In the first iteration, δ = ∅ and bi = 0, ∀i ∈ G4. Table IV
lists four equations that bound the increase of yδ implying
yδ = 0.0012 by (9). Thus we update δ = {U5} by (8). Remark
that sδ(i) does not change since D(i) < D − D(δ) holds

TABLE VII
CANDIDATE DEVICES

Group Sel. Devices Compl. Time Incen. Paym. Data Quan. Train. Cost
G3 U2, U3, U5 0.6 1.74 900 1.17
G4 U1, U3, U5 0.6 1.88 990 1.24
G5 U1, U3, U5 0.6 1.88 990 1.24

in (7). Then, Tables V and VI show the updated bi and the
equations for remaining three devices. For example, b1 = 0 +
440 · 0.0012 ≈ 0.53 for device U1. By (8), we can obtain δ =
{U5, U1}. Eventually, we can derive Gt4 = δ = {U5, U1, U3}.
CD Gathering obtains a candidate solution for each group. �

3) Candidate Devices (CD) Scheduling: This phase sched-
ules the selected devices Gth for each group Gh. It is natural
to assume the number of channels is usually smaller than that
of devices (i.e., |M | < |K|). Otherwise, each device can be
assigned to a different channel, which explicitly indicates no
need for scheduling. In particular, for each group Gh with a set
of selected source devices Gth that meets the user requirement
(i.e., D(Gth) ≥ D), CD Scheduling first sorts the selected
devices in Gth in non-increasing order by upload time length
of devices. Then, CD Scheduling iteratively assign the devices
in Gth by its upload time in non-increasing order to a channel
with the lowest current upload completion time until all the
devices are assigned. Let Gth(m) denote the set of devices in
Gth assigned to channel m ∈M . Then, CD Scheduling finishes
scheduling and obtains the approximated upload completion
time τ(Gth) for each group Gh over the channels, i.e.,

τ(Gth) = max
m∈M

∑
k∈Gt

h(m)

t(k), for all groups G1,G2, ...

Thus, the exact cost of the selected devices Gth for each group
Gh can be approximated by the following formula.

c(Gth) = α
∑
k∈Gt

h

c(k) + β · τ(Gth), for all groups G1,G2, ...

Remark that CD Scheduling only exploits τ(Gth) to approxi-
mate the minimum upload completion time for scheduling the
devices in Gth since finding the minimum upload completion
time for scheduling over multiple channels is NP-hard.
Example 4. Table VII follows Example 3 to show an example
of CD Scheduling where only three candidate solutions meet
the requirement in Table VII. For example, the candidate solu-
tion for group G3 selects devices U2, U3, U5 with a scheduling
of upload completion time 0.6 in Fig 1(c). �

4) Final Solution (FS) Selection: The final phase selects the
solution with device set G′ among all the device sets Gt1,Gt2, ...
for all groups G1,G2, ... that 1) has the minimum approximated
cost and 2) guarantees the total performance meeting the ASP’s
requirement. That is,

G′ = argmin
Gt
h:D(Gt

h)≥D
c(Gth).

Example 5. Following Example 4, this example demonstrates
FS Selection. FS Selection obtains the training cost of the three
candidate solutions for G3, G4 and G5, which are 0.5× 1.74+
0.5 × 0.6 = 1.17, 0.5 × 1.88 + 0.5 × 0.6 = 1.24, and 1.24



respectively, as shown in Table VII. Thus, FS Selection chooses
the minimum-cost candidate solution Gt3 of group G3. �

V. THEORETICAL ANALYSIS

The time complexity and approximation ratio are as follows.
Time Complexity. The time complexity is O(|K|3). We omit
the details due to page limit. DETECT is efficient and can be
accelerated with multiple processors (see Section VI). �

Theorem 1. DETECT is a 3-approximation algorithm.

Proof. Let G′ denote the set of devices with training cost c(G′)
selected by FS Selection, where all devices in G′ are iteratively
selected from group Gh′ by CD Gathering (i.e., G′ = Gth′ ).
There exist two possible cases for the maximum upload time
l′ of device set G′. Consider the first case, l′ is equal to
the maximum upload time l∗ of device set G∗ selected by
the optimal solution, and l′ 6= l∗ in the second case. In the
following, let c∗ denote the optimal training cost.

For the first case, we calculate the upload completion time
τ(G′) for devices in G′. Since CD Scheduling iteratively
assigns the devices with the maximum upload time to the
channel with the lowest workload, the device with the last up-
load completion time in the scheduling must start transmitting
before the time

∑
i∈G′ t(i)

|M | . Besides, the upload time length of
last device must be no longer than that of the longest one,
maxi∈G′ t(i). Therefore, we know

c(G′) = α
∑
i∈G′

c(i) + β · τ(G′)

≤ α
∑
i∈G′

c(i) + β

(∑
i∈G′ t(i)

|M |
+max

i∈G′
t(i)

)
=
∑
i∈G′

ĉ(i) + β

(
max
i∈G′

t(i)

)
≤
∑
i∈G′

ĉ(i) + c∗. (10)

The last inequality holds since the optimal solution has a device
with upload time maxi∈G′ t(i) in the first case. Let yδ = 0 if
yδ is not set by (9) to generate solution G′ and thus we know∑

i∈G′
ĉ(i) =

∑
δ⊆Gh′

yδ
∑
i∈G′\δ

sδ(i).

Let il be the last device in G′ selected by DETECT. Thus,
D(G′) ≥ D and D(G′ \ {il}) < D. Hence, for all the devices
i ∈ G′ except il, sδ(i) = min{D(i),D−D(i)} = D(i) at that
time in CD Gathering where δ was the set of devices at that
point. Then, let R(δ) = D −D(δ), and we have∑

i∈G′\δ

sδ(i) = sδ(il) +D(G′ \ {il})−D(δ) < 2R(δ).

The last inequality holds since sδ(il) = D−D(i) ≤ R(δ) and
D(G′ \ {il}) −D(δ) < D −D(δ) = R(δ). Then, we can see
that for any δ ⊆ G∗, R(δ) ≤

∑
i∈G∗\δ s

δ(i). Thus, due to (9),∑
i∈G′

ĉ(i) < 2
∑
δ⊆Gh′

yδR(δ) ≤ 2
∑
δ⊆Gh′

yδ
∑

i∈G∗\δ

sδ(i)

= 2
∑
i∈G∗

∑
δ⊆Gh′ :i/∈δ

yδs
δ(i) ≤ 2

∑
i∈G∗

ĉ(i) ≤ 2c∗. (11)
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Fig. 2. Effect of different parameters on different metrics.

By (10) and (11), we have c(G′) ≤ 3c∗. The first case holds.
For the second case, recall that FS Selection examines the

candidate solution for each possible maximum upload time
length and then selects the one with the minimum training
cost. Since the candidate solution with the maximum upload
time length l∗ must be examined by FS Selection, c(G′) must
be bounded within 3c∗. The theorem follows.

VI. PERFORMANCE EVALUATION

A. Simulation and Implementation Settings

DETECT is compared with two traditional approaches NFL
[3] and GCS [19] (introduced in Example 1 and Section IV) on
several devices that connect to a BS with multiple channels.
We extract 55000 images in [20] for training and distribute
them to 100 devices (i.e, D(i) is randomly distributed) with
Gaussian distribution, and leave 10000 images for testing. A
convolutional neural network is adopted as the global model
which comprises two 3 × 3 convolutional layers (the 1st and
2nd layers with 32 and 64 channels, each of which is activated
by ReLU) and followed by one 2×2 max pooling with dropout,
flatten, and one fully connected layer with 128 units with
dropout (with ReLU activation and another 10 units activated
by soft-max). The local minibatch size, the number of local
epochs, and the learning rate are set to 64, 5, and 0.01.

For incentive payment and upload time, we set e(i) randomly
with a mean of 0.104 and set d(i) = 0.001584 × D(i) (i.e.,
0.001584 per datum) [21], [22], and t(i) randomly from 0.1 to
2 (i.e., seconds for transferring one-megabyte local parameters
with data rate from 4 to 80 Mbps in 4G LTE). The default |M |
and D are set to 3 and 5K, respectively. We adopt 100-round
FL and α and β are set to 1 and 10. The above parameters
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Fig. 3. Accuracy and loss of different approaches.

are changed to observe the metrics including 1) training cost,
2) incentive payment, 3) upload time, 4) accuracy, and 5) loss.
Each simulation result is averaged over 100 samples.

B. Training Cost Trade-Off and Obscure Training Cost

Overall, the training cost increases as D increases while
decreasing as |M | goes up as shown in Fig. 2. GCS minimizes
incentive payment, but suffers from longer upload time. By
contrast, DETECT benefits from using the bidding process to
reduce more than 50% upload time and achieves training cost
trade-off. Note that neither of NFL and GCS changes incentive
payment as the number of channels increases in Fig. 2(b).
However, due to binal cost, more channels induce DETECT
to select the devices with a higher upload time yet a slightly
lower incentive payment (from 8.91 to 8.89). Moreover, Figs.
2(c) and 2(d) show the error between the exact cost and binal
cost (DETECT-B). Obviously, the exact and binal costs grow
together and their difference is bounded within β ·maxi∈G′ t(i),
which meets Theorem 1 and reveals the obscure training cost.

C. Complicated Upload Time Minimization and Convergence

Overall, the upload time of all approaches declines as the
number of channels increases in Figs. 2(b), 2(d), and 2(f).
DETECT outperforms others since it carefully examines every
device to avoid selecting the devices with overlength upload
time and reduce the idle time in most of the channels. Besides,
Figs. 3(a) and 3(b) manifest that DETECT barely sacrifices
accuracy and convergence. Table VIII also shows that DETECT
reduces the convergence time by more than 20% compared
with other approaches since it optimizes upload scheduling.

D. Running Time with Different Number of Processors

For DETECT, the speedup factor can be almost linear to
the number of processors as shown in Table IX. DETECT
has the strong scalability since CD Grouping creates multiple
device groups and any two groups have no data dependencies.
Thus, each device group can be processed by CD Gathering
and CD Scheduling in parallel. Finally, FS Selection waits for
the slowest processor to collect all the candidate solutions.

VII. CONCLUSIONS

In this paper, a new optimization problem, TRAIN, is studied
to jointly consider incentive payment and upload time to foster
proper decisions for device selection and upload scheduling
in FL. It is more difficult than traditional problems due to
the challenges, training cost trade-off, complicated upload
time minimization, and obscure training cost. We propose a
novel algorithm to subtly limit upload time length and exploit

TABLE VIII
CONVERGENCE TIME OF DIFFERENT APPROACHES (SEC)

Accuracy 80% 84% 88% 92%

DETECT 12.77 (1x) 15.32 (1x) 25.54 (1x) 68.96 (1x)
NFL 25.05 (1.96x) 35.02 (2.29x) 55.04 (2.15x) 165.11(2.39x)
GCS 15.91 (1.25x) 19.89 (1.30x) 31.82 (1.25x) 95.46 (1.39x)

TABLE IX
RUNNING TIME WITH DIFFERENT NUMBER OF PROCESSORS

Number of Processors 1 2 4 8
Running Time (sec) 0.3352 0.1680 0.0845 0.0426

Speedup Factor 1x 1.99x 3.97x 7.87x

insightful notions, binal cost, and bidding process, to achieve
an approximation ratio. Simulation results manifest that DE-
TECT reduces more than 50% training cost compared with the
existing approaches. For future research, it will be interesting to
modify DETECT for networks in which devices have different
computing time. Another one is to extend DETECT to consider
multiple FL tasks requested by ASPs at the same time.

REFERENCES

[1] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wire-
less networking: A survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2224–2287, 2019.

[2] T. Yang et al., “Applied federated learning: Improving google keyboard
query suggestions,” arXiv preprint arXiv:1812.02903, 2018.

[3] H. B. McMahan et al., “Communication-efficient learning of deep
networks from decentralized data,” in AISTATS, 2017.

[4] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in IEEE ICC, 2019.

[5] S. Wang et al., “When edge meets learning: Adaptive control for resource
constrained distributed machine learning,” in IEEE INFOCOM, 2018.

[6] Y. Zhang and M. Van der Schaar, “Reputation-based incentive protocols
in crowdsourcing applications,” in IEEE INFOCOM, 2012.

[7] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient data communication
for distributed synchronous SGD algorithms,” in IEEE INFOCOM, 2019.

[8] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, pp. 2322–2358, 2017.

[9] S.-H. Hsu, C.-H. Lin, C.-Y. Wang, and W.-T. Chen, “Breaking bandwidth
limitation for mission-critical IoT using semisequential multiple relays,”
IEEE Internet Things J., vol. 5, pp. 3316–3329, 2018.
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